BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 35238575)

  • 1. Guanine-Specific Chemical Reaction Reveals ssDNA Interactions on Carbon Nanotube Surfaces.
    Zheng Y; Alizadehmojarad AA; Bachilo SM; Weisman RB
    J Phys Chem Lett; 2022 Mar; 13(9):2231-2236. PubMed ID: 35238575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoluminescence Dynamics Defined by Exciton Trapping Potential of Coupled Defect States in DNA-Functionalized Carbon Nanotubes.
    Zheng Y; Weight BM; Jones AC; Chandrasekaran V; Gifford BJ; Tretiak S; Doorn SK; Htoon H
    ACS Nano; 2021 Jan; 15(1):923-933. PubMed ID: 33395262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compositional Analysis of ssDNA-Coated Single-Wall Carbon Nanotubes through UV Absorption Spectroscopy.
    Alizadehmojarad AA; Bachilo SM; Weisman RB
    Nano Lett; 2022 Oct; 22(20):8203-8209. PubMed ID: 36201880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlled Patterning of Carbon Nanotube Energy Levels by Covalent DNA Functionalization.
    Zheng Y; Bachilo SM; Weisman RB
    ACS Nano; 2019 Jul; 13(7):8222-8228. PubMed ID: 31244048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding the binding mechanism of various chiral SWCNTs and ssDNA: a computational study.
    Neihsial S; Periyasamy G; Samanta PK; Pati SK
    J Phys Chem B; 2012 Dec; 116(51):14754-9. PubMed ID: 23199121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insertion kinetics of small nucleotides through single walled carbon nanotube.
    Clavier A; Kraszewski S; Ramseyer C; Picaud F
    J Biotechnol; 2013 Mar; 164(1):13-8. PubMed ID: 23262130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dye Quenching of Carbon Nanotube Fluorescence Reveals Structure-Selective Coating Coverage.
    Zheng Y; Alizadehmojarad AA; Bachilo SM; Kolomeisky AB; Weisman RB
    ACS Nano; 2020 Sep; 14(9):12148-12158. PubMed ID: 32845604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quenching of Single-Walled Carbon Nanotube Fluorescence by Dissolved Oxygen Reveals Selective Single-Stranded DNA Affinities.
    Zheng Y; Bachilo SM; Weisman RB
    J Phys Chem Lett; 2017 May; 8(9):1952-1955. PubMed ID: 28406641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing the Salt Concentration Dependent Nucelobase Distribution in a Single-Stranded DNA-Single-Walled Carbon Nanotube Hybrid with Molecular Dynamics.
    Ghosh S; Patel N; Chakrabarti R
    J Phys Chem B; 2016 Jan; 120(3):455-66. PubMed ID: 26716359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Readily reusable electrochemical DNA hybridization biosensor based on the interaction of DNA with single-walled carbon nanotubes.
    Zhang X; Jiao K; Liu S; Hu Y
    Anal Chem; 2009 Aug; 81(15):6006-12. PubMed ID: 20337392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequence-specific self-stitching motif of short single-stranded DNA on a single-walled carbon nanotube.
    Roxbury D; Jagota A; Mittal J
    J Am Chem Soc; 2011 Aug; 133(34):13545-50. PubMed ID: 21797248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensitive Detection of a Modified Base in Single-Stranded DNA by a Single-Walled Carbon Nanotube.
    Zhang S; Wang X; Li T; Liu L; Wu HC; Luo M; Li J
    Langmuir; 2015 Sep; 31(36):10094-9. PubMed ID: 26259044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A fundamental study of photoluminescence modulation from DNA-wrapped single-walled carbon nanotubes.
    Oura S; Ito M; Homma Y; Umemura K
    Eur Biophys J; 2018 Jul; 47(5):523-530. PubMed ID: 29159501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of single-stranded DNA with curved carbon nanotube is much stronger than with flat graphite.
    Iliafar S; Mittal J; Vezenov D; Jagota A
    J Am Chem Soc; 2014 Sep; 136(37):12947-57. PubMed ID: 25162693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum Light Emission from Coupled Defect States in DNA-Functionalized Carbon Nanotubes.
    Zheng Y; Kim Y; Jones AC; Olinger G; Bittner ER; Bachilo SM; Doorn SK; Weisman RB; Piryatinski A; Htoon H
    ACS Nano; 2021 Jun; 15(6):10406-10414. PubMed ID: 34061507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Steered molecular dynamics simulation study on dynamic self-assembly of single-stranded DNA with double-walled carbon nanotube and graphene.
    Cheng CL; Zhao GJ
    Nanoscale; 2012 Apr; 4(7):2301-5. PubMed ID: 22392473
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics simulations reveal single-stranded DNA (ssDNA) forms ordered structures upon adsorbing onto single-walled carbon nanotubes (SWCNT).
    Hinkle KR
    Colloids Surf B Biointerfaces; 2022 Apr; 212():112343. PubMed ID: 35066312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Escherichia coli single-strand binding protein-DNA interactions on carbon nanotube-modified electrodes from a label-free electrochemical hybridization sensor.
    Kerman K; Morita Y; Takamura Y; Tamiya E
    Anal Bioanal Chem; 2005 Mar; 381(6):1114-21. PubMed ID: 15770476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption and Desorption of Single-Stranded DNA from Single-Walled Carbon Nanotubes.
    Shearer CJ; Yu L; Fenati R; Sibley AJ; Quinton JS; Gibson CT; Ellis AV; Andersson GG; Shapter JG
    Chem Asian J; 2017 Jul; 12(13):1625-1634. PubMed ID: 28407412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation study of noncovalent hybridization of carbon nanotubes by single-stranded DNA in water.
    Martin W; Zhu W; Krilov G
    J Phys Chem B; 2008 Dec; 112(50):16076-89. PubMed ID: 19367836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.