These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 35238575)

  • 1. Guanine-Specific Chemical Reaction Reveals ssDNA Interactions on Carbon Nanotube Surfaces.
    Zheng Y; Alizadehmojarad AA; Bachilo SM; Weisman RB
    J Phys Chem Lett; 2022 Mar; 13(9):2231-2236. PubMed ID: 35238575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequence-Dependent Surface Coverage of ssDNA Coatings on Single-Wall Carbon Nanotubes.
    Alizadehmojarad AA; Bachilo SM; Weisman RB
    J Phys Chem A; 2024 Jul; 128(28):5578-5585. PubMed ID: 38981061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoluminescence Dynamics Defined by Exciton Trapping Potential of Coupled Defect States in DNA-Functionalized Carbon Nanotubes.
    Zheng Y; Weight BM; Jones AC; Chandrasekaran V; Gifford BJ; Tretiak S; Doorn SK; Htoon H
    ACS Nano; 2021 Jan; 15(1):923-933. PubMed ID: 33395262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compositional Analysis of ssDNA-Coated Single-Wall Carbon Nanotubes through UV Absorption Spectroscopy.
    Alizadehmojarad AA; Bachilo SM; Weisman RB
    Nano Lett; 2022 Oct; 22(20):8203-8209. PubMed ID: 36201880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlled Patterning of Carbon Nanotube Energy Levels by Covalent DNA Functionalization.
    Zheng Y; Bachilo SM; Weisman RB
    ACS Nano; 2019 Jul; 13(7):8222-8228. PubMed ID: 31244048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding the binding mechanism of various chiral SWCNTs and ssDNA: a computational study.
    Neihsial S; Periyasamy G; Samanta PK; Pati SK
    J Phys Chem B; 2012 Dec; 116(51):14754-9. PubMed ID: 23199121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insertion kinetics of small nucleotides through single walled carbon nanotube.
    Clavier A; Kraszewski S; Ramseyer C; Picaud F
    J Biotechnol; 2013 Mar; 164(1):13-8. PubMed ID: 23262130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dye Quenching of Carbon Nanotube Fluorescence Reveals Structure-Selective Coating Coverage.
    Zheng Y; Alizadehmojarad AA; Bachilo SM; Kolomeisky AB; Weisman RB
    ACS Nano; 2020 Sep; 14(9):12148-12158. PubMed ID: 32845604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systematic Selection of High-Affinity ssDNA Sequences to Carbon Nanotubes.
    Lee D; Lee J; Kim W; Suh Y; Park J; Kim S; Kim Y; Kwon S; Jeong S
    Adv Sci (Weinh); 2024 Aug; 11(32):e2308915. PubMed ID: 38932669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quenching of Single-Walled Carbon Nanotube Fluorescence by Dissolved Oxygen Reveals Selective Single-Stranded DNA Affinities.
    Zheng Y; Bachilo SM; Weisman RB
    J Phys Chem Lett; 2017 May; 8(9):1952-1955. PubMed ID: 28406641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing the Salt Concentration Dependent Nucelobase Distribution in a Single-Stranded DNA-Single-Walled Carbon Nanotube Hybrid with Molecular Dynamics.
    Ghosh S; Patel N; Chakrabarti R
    J Phys Chem B; 2016 Jan; 120(3):455-66. PubMed ID: 26716359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Readily reusable electrochemical DNA hybridization biosensor based on the interaction of DNA with single-walled carbon nanotubes.
    Zhang X; Jiao K; Liu S; Hu Y
    Anal Chem; 2009 Aug; 81(15):6006-12. PubMed ID: 20337392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequence-specific self-stitching motif of short single-stranded DNA on a single-walled carbon nanotube.
    Roxbury D; Jagota A; Mittal J
    J Am Chem Soc; 2011 Aug; 133(34):13545-50. PubMed ID: 21797248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitive Detection of a Modified Base in Single-Stranded DNA by a Single-Walled Carbon Nanotube.
    Zhang S; Wang X; Li T; Liu L; Wu HC; Luo M; Li J
    Langmuir; 2015 Sep; 31(36):10094-9. PubMed ID: 26259044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A fundamental study of photoluminescence modulation from DNA-wrapped single-walled carbon nanotubes.
    Oura S; Ito M; Homma Y; Umemura K
    Eur Biophys J; 2018 Jul; 47(5):523-530. PubMed ID: 29159501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of single-stranded DNA with curved carbon nanotube is much stronger than with flat graphite.
    Iliafar S; Mittal J; Vezenov D; Jagota A
    J Am Chem Soc; 2014 Sep; 136(37):12947-57. PubMed ID: 25162693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum Light Emission from Coupled Defect States in DNA-Functionalized Carbon Nanotubes.
    Zheng Y; Kim Y; Jones AC; Olinger G; Bittner ER; Bachilo SM; Doorn SK; Weisman RB; Piryatinski A; Htoon H
    ACS Nano; 2021 Jun; 15(6):10406-10414. PubMed ID: 34061507
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Steered molecular dynamics simulation study on dynamic self-assembly of single-stranded DNA with double-walled carbon nanotube and graphene.
    Cheng CL; Zhao GJ
    Nanoscale; 2012 Apr; 4(7):2301-5. PubMed ID: 22392473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics simulations reveal single-stranded DNA (ssDNA) forms ordered structures upon adsorbing onto single-walled carbon nanotubes (SWCNT).
    Hinkle KR
    Colloids Surf B Biointerfaces; 2022 Apr; 212():112343. PubMed ID: 35066312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Escherichia coli single-strand binding protein-DNA interactions on carbon nanotube-modified electrodes from a label-free electrochemical hybridization sensor.
    Kerman K; Morita Y; Takamura Y; Tamiya E
    Anal Bioanal Chem; 2005 Mar; 381(6):1114-21. PubMed ID: 15770476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.