BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 35238637)

  • 1. Metformin, phenformin, and galegine inhibit complex IV activity and reduce glycerol-derived gluconeogenesis.
    LaMoia TE; Butrico GM; Kalpage HA; Goedeke L; Hubbard BT; Vatner DF; Gaspar RC; Zhang XM; Cline GW; Nakahara K; Woo S; Shimada A; Hüttemann M; Shulman GI
    Proc Natl Acad Sci U S A; 2022 Mar; 119(10):e2122287119. PubMed ID: 35238637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase.
    Madiraju AK; Erion DM; Rahimi Y; Zhang XM; Braddock DT; Albright RA; Prigaro BJ; Wood JL; Bhanot S; MacDonald MJ; Jurczak MJ; Camporez JP; Lee HY; Cline GW; Samuel VT; Kibbey RG; Shulman GI
    Nature; 2014 Jun; 510(7506):542-6. PubMed ID: 24847880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metformin's Therapeutic Efficacy in the Treatment of Diabetes Does Not Involve Inhibition of Mitochondrial Glycerol Phosphate Dehydrogenase.
    MacDonald MJ; Ansari IH; Longacre MJ; Stoker SW
    Diabetes; 2021 Jul; 70(7):1575-1580. PubMed ID: 33849997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metformin inhibits gluconeogenesis via a redox-dependent mechanism in vivo.
    Madiraju AK; Qiu Y; Perry RJ; Rahimi Y; Zhang XM; Zhang D; Camporez JG; Cline GW; Butrico GM; Kemp BE; Casals G; Steinberg GR; Vatner DF; Petersen KF; Shulman GI
    Nat Med; 2018 Sep; 24(9):1384-1394. PubMed ID: 30038219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of two glucose absorption inhibitors: phenformin and 43-522 on hepatic gluconeogenesis.
    Ho RS; Kelly LA
    J Pharm Pharmacol; 1980 Aug; 32(8):554-7. PubMed ID: 6106692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blood-glucose-lowering activity of 2-(3-phenylpropoxyimido)-butyrate (BM 13.677).
    Kühnle HF; Wolff HP; Schmidt FH; Reiter R
    Biochem Pharmacol; 1990 Oct; 40(8):1821-5. PubMed ID: 2242016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellular and Molecular Mechanisms of Metformin Action.
    LaMoia TE; Shulman GI
    Endocr Rev; 2021 Jan; 42(1):77-96. PubMed ID: 32897388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rat liver glycogen-lowering activity of fed creatine--a retraction.
    Laastuen L; Todd WR
    J Nutr; 1969 Dec; 99(4):446-8. PubMed ID: 5361587
    [No Abstract]   [Full Text] [Related]  

  • 9. Molecular action of metformin in hepatocytes: an updated insight.
    Sliwinska A; Drzewoski J
    Curr Diabetes Rev; 2015; 11(3):175-81. PubMed ID: 25808533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low metformin causes a more oxidized mitochondrial NADH/NAD redox state in hepatocytes and inhibits gluconeogenesis by a redox-independent mechanism.
    Alshawi A; Agius L
    J Biol Chem; 2019 Feb; 294(8):2839-2853. PubMed ID: 30591586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A proposal for the locus of metformin's clinical action: potentiation of the activation of pyruvate kinase by fructose-1,6-diphosphate.
    McCarty MF
    Med Hypotheses; 1999 Feb; 52(2):89-93. PubMed ID: 10340287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of gluconeogenesis by metformin: does redox trump energy charge?
    Baur JA; Birnbaum MJ
    Cell Metab; 2014 Aug; 20(2):197-9. PubMed ID: 25100057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Current understanding of metformin effect on the control of hyperglycemia in diabetes.
    An H; He L
    J Endocrinol; 2016 Mar; 228(3):R97-106. PubMed ID: 26743209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissecting the actions of widely used diabetes drugs.
    Unger RH; Berglund ED; Habener JF; Cherrington AD
    Nat Med; 2013 Mar; 19(3):272-3. PubMed ID: 23467236
    [No Abstract]   [Full Text] [Related]  

  • 15. Comparative effects of phenformin, metformin and glibenclamide on metabolic rhythms in maturity-onset diabetics.
    Nattrass M; Todd PG; Hinks L; Lloyd B; Alberti KG
    Diabetologia; 1977 Apr; 13(2):145-52. PubMed ID: 404205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of metformin compared to the effects of phenformin on the lactate production and the metabolism of isolated parenchymal rat liver cell.
    Jalling O; Olsen C
    Acta Pharmacol Toxicol (Copenh); 1984 May; 54(5):327-32. PubMed ID: 6431751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The target of metformin in type 2 diabetes.
    Ferrannini E
    N Engl J Med; 2014 Oct; 371(16):1547-8. PubMed ID: 25317875
    [No Abstract]   [Full Text] [Related]  

  • 18. Pleiotropic Effects of Biguanides on Mitochondrial Reactive Oxygen Species Production.
    Pecinova A; Drahota Z; Kovalcikova J; Kovarova N; Pecina P; Alan L; Zima M; Houstek J; Mracek T
    Oxid Med Cell Longev; 2017; 2017():7038603. PubMed ID: 28874953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of biguanides on the intermediate metabolism of glucose in normal and portal-strictured rats.
    Schlienger JL; Frick A; Marbach J; Freund H; Imler M
    Diabete Metab; 1979 Mar; 5(1):5-9. PubMed ID: 446834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state.
    Foretz M; Hébrard S; Leclerc J; Zarrinpashneh E; Soty M; Mithieux G; Sakamoto K; Andreelli F; Viollet B
    J Clin Invest; 2010 Jul; 120(7):2355-69. PubMed ID: 20577053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.