These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 35238791)
1. Using Momentary Assessment and Machine Learning to Identify Barriers to Self-management in Type 1 Diabetes: Observational Study. Zhang P; Fonnesbeck C; Schmidt DC; White J; Kleinberg S; Mulvaney SA JMIR Mhealth Uhealth; 2022 Mar; 10(3):e21959. PubMed ID: 35238791 [TBL] [Abstract][Full Text] [Related]
2. Mobile Momentary Assessment and Biobehavioral Feedback for Adolescents with Type 1 Diabetes: Feasibility and Engagement Patterns. Mulvaney SA; Vaala S; Hood KK; Lybarger C; Carroll R; Williams L; Schmidt DC; Johnson K; Dietrich MS; Laffel L Diabetes Technol Ther; 2018 Jul; 20(7):465-474. PubMed ID: 29882677 [TBL] [Abstract][Full Text] [Related]
3. A mobile app identifies momentary psychosocial and contextual factors related to mealtime self-management in adolescents with type 1 diabetes. Mulvaney SA; Vaala SE; Carroll RB; Williams LK; Lybarger CK; Schmidt DC; Dietrich MS; Laffel LM; Hood KK J Am Med Inform Assoc; 2019 Dec; 26(12):1627-1631. PubMed ID: 31529065 [TBL] [Abstract][Full Text] [Related]
4. Ecological momentary assessment for health behaviors and contextual factors in persons with diabetes: A systematic review. Nam S; Griggs S; Ash GI; Dunton GF; Huang S; Batten J; Parekh N; Whittemore R Diabetes Res Clin Pract; 2021 Apr; 174():108745. PubMed ID: 33713720 [TBL] [Abstract][Full Text] [Related]
5. Daily Functioning of Veterans With Type 2 Diabetes: Protocol for an Ambulatory Assessment Study. Wooldridge JS; Morse JL; Delgado J; Afari N JMIR Res Protoc; 2023 Nov; 12():e53874. PubMed ID: 37983070 [TBL] [Abstract][Full Text] [Related]
6. Using mobile phones to measure adolescent diabetes adherence. Mulvaney SA; Rothman RL; Dietrich MS; Wallston KA; Grove E; Elasy TA; Johnson KB Health Psychol; 2012 Jan; 31(1):43-50. PubMed ID: 21967662 [TBL] [Abstract][Full Text] [Related]
7. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes. Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477 [TBL] [Abstract][Full Text] [Related]
8. Associations of clinical, psychological, and sociodemographic characteristics and ecological momentary assessment completion in the 10-week Hypo-METRICS study: Hypoglycaemia MEasurements ThResholds and ImpaCtS. Zaremba N; Martine-Edith G; Divilly P; Søholm U; Broadley M; Ali N; Abbink EJ; de Galan B; Cigler M; Mader JK; Brosen J; Pedersen-Bjergaard U; Vaag A; Evans M; Renard E; McCrimmon RJ; Heller S; Speight J; Pouwer F; Amiel SA; Choudhary P; Diabet Med; 2024 Aug; 41(8):e15345. PubMed ID: 38760977 [TBL] [Abstract][Full Text] [Related]
9. Depression Prediction by Using Ecological Momentary Assessment, Actiwatch Data, and Machine Learning: Observational Study on Older Adults Living Alone. Kim H; Lee S; Lee S; Hong S; Kang H; Kim N JMIR Mhealth Uhealth; 2019 Oct; 7(10):e14149. PubMed ID: 31621642 [TBL] [Abstract][Full Text] [Related]
10. Applying Machine Learning to Daily-Life Data From the TrackYourTinnitus Mobile Health Crowdsensing Platform to Predict the Mobile Operating System Used With High Accuracy: Longitudinal Observational Study. Pryss R; Schlee W; Hoppenstedt B; Reichert M; Spiliopoulou M; Langguth B; Breitmayer M; Probst T J Med Internet Res; 2020 Jun; 22(6):e15547. PubMed ID: 32602842 [TBL] [Abstract][Full Text] [Related]
11. Mobile Phone-Based Unobtrusive Ecological Momentary Assessment of Day-to-Day Mood: An Explorative Study. Asselbergs J; Ruwaard J; Ejdys M; Schrader N; Sijbrandij M; Riper H J Med Internet Res; 2016 Mar; 18(3):e72. PubMed ID: 27025287 [TBL] [Abstract][Full Text] [Related]
12. A cognitive behavioral therapy intervention to reduce fear of hypoglycemia in young adults with type 1 diabetes (FREE): study protocol for a randomized controlled trial. Martyn-Nemeth P; Duffecy J; Quinn L; Park C; Mihailescu D; Penckofer S Trials; 2019 Dec; 20(1):796. PubMed ID: 31888691 [TBL] [Abstract][Full Text] [Related]
13. Intensive Longitudinal Data Collection Using Microinteraction Ecological Momentary Assessment: Pilot and Preliminary Results. Ponnada A; Wang S; Chu D; Do B; Dunton G; Intille S JMIR Form Res; 2022 Feb; 6(2):e32772. PubMed ID: 35138253 [TBL] [Abstract][Full Text] [Related]
14. Feasibility and Performance Test of a Real-Time Sensor-Informed Context-Sensitive Ecological Momentary Assessment to Capture Physical Activity. Dunton GF; Dzubur E; Intille S J Med Internet Res; 2016 Jun; 18(6):e106. PubMed ID: 27251313 [TBL] [Abstract][Full Text] [Related]
15. Using Mobile Ecological Momentary Assessment to Understand Consumption and Context Around Online Food Delivery Use: Pilot Feasibility and Acceptability Study. Jia SS; Allman-Farinelli M; Roy R; Phongsavan P; Hyun K; Gibson AA; Partridge SR JMIR Mhealth Uhealth; 2023 Nov; 11():e49135. PubMed ID: 38019563 [TBL] [Abstract][Full Text] [Related]
16. Development and Acceptability of a Method to Investigate Prescription Drug Misuse in Daily Life: Ecological Momentary Assessment Study. Papp LM; Barringer A; Blumenstock SM; Gu P; Blaydes M; Lam J; Kouros CD JMIR Mhealth Uhealth; 2020 Oct; 8(10):e21676. PubMed ID: 32877351 [TBL] [Abstract][Full Text] [Related]
17. Glycemic Variability and Fluctuations in Cognitive Status in Adults With Type 1 Diabetes (GluCog): Observational Study Using Ecological Momentary Assessment of Cognition. Mascarenhas Fonseca L; Strong RW; Singh S; Bulger JD; Cleveland M; Grinspoon E; Janess K; Jung L; Miller K; Passell E; Ressler K; Sliwinski MJ; Verdejo A; Weinstock RS; Germine L; Chaytor NS JMIR Diabetes; 2023 Jan; 8():e39750. PubMed ID: 36602848 [TBL] [Abstract][Full Text] [Related]
18. Assessing adolescent asthma symptoms and adherence using mobile phones. Mulvaney SA; Ho YX; Cala CM; Chen Q; Nian H; Patterson BL; Johnson KB J Med Internet Res; 2013 Jul; 15(7):e141. PubMed ID: 23864345 [TBL] [Abstract][Full Text] [Related]
19. Diabetes technology and treatments in the paediatric age group. Shalitin S; Peter Chase H Int J Clin Pract Suppl; 2011 Feb; (170):76-82. PubMed ID: 21323816 [TBL] [Abstract][Full Text] [Related]