These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
331 related articles for article (PubMed ID: 35238969)
1. Detection of pulmonary nodules with scoutless fixed-dose ultra-low-dose CT: a prospective study. Gheysens G; De Wever W; Cockmartin L; Bosmans H; Coudyzer W; De Vuysere S; Lefere M Eur Radiol; 2022 Jul; 32(7):4437-4445. PubMed ID: 35238969 [TBL] [Abstract][Full Text] [Related]
2. Effects of Iterative Reconstruction Algorithms on Computer-assisted Detection (CAD) Software for Lung Nodules in Ultra-low-dose CT for Lung Cancer Screening. Nomura Y; Higaki T; Fujita M; Miki S; Awaya Y; Nakanishi T; Yoshikawa T; Hayashi N; Awai K Acad Radiol; 2017 Feb; 24(2):124-130. PubMed ID: 27986507 [TBL] [Abstract][Full Text] [Related]
3. Clinical value of deep learning image reconstruction on the diagnosis of pulmonary nodule for ultra-low-dose chest CT imaging. Zheng Z; Ai Z; Liang Y; Li Y; Wu Z; Wu M; Han Q; Ma K; Xiang Z Clin Radiol; 2024 Aug; 79(8):628-636. PubMed ID: 38749827 [TBL] [Abstract][Full Text] [Related]
4. Linear and volume measurements of pulmonary nodules at different CT dose levels - intrascan and interscan analysis. Hein PA; Romano VC; Rogalla P; Klessen C; Lembcke A; Dicken V; Bornemann L; Bauknecht HC Rofo; 2009 Jan; 181(1):24-31. PubMed ID: 19085687 [TBL] [Abstract][Full Text] [Related]
5. Ultra-low-dose CT lung screening with artificial intelligence iterative reconstruction: evaluation via automatic nodule-detection software. Yang L; Liu H; Han J; Xu S; Zhang G; Wang Q; Du Y; Yang F; Zhao X; Shi G Clin Radiol; 2023 Jul; 78(7):525-531. PubMed ID: 36948944 [TBL] [Abstract][Full Text] [Related]
6. Deep Learning Reconstruction Shows Better Lung Nodule Detection for Ultra-Low-Dose Chest CT. Jiang B; Li N; Shi X; Zhang S; Li J; de Bock GH; Vliegenthart R; Xie X Radiology; 2022 Apr; 303(1):202-212. PubMed ID: 35040674 [TBL] [Abstract][Full Text] [Related]
7. Variability of semiautomated lung nodule volumetry on ultralow-dose CT: comparison with nodule volumetry on standard-dose CT. Hein PA; Romano VC; Rogalla P; Klessen C; Lembcke A; Bornemann L; Dicken V; Hamm B; Bauknecht HC J Digit Imaging; 2010 Feb; 23(1):8-17. PubMed ID: 18773240 [TBL] [Abstract][Full Text] [Related]
8. Ultralow dose CT for pulmonary nodule detection with chest x-ray equivalent dose - a prospective intra-individual comparative study. Messerli M; Kluckert T; Knitel M; Wälti S; Desbiolles L; Rengier F; Warschkow R; Bauer RW; Alkadhi H; Leschka S; Wildermuth S Eur Radiol; 2017 Aug; 27(8):3290-3299. PubMed ID: 28093625 [TBL] [Abstract][Full Text] [Related]
9. Detection and size measurements of pulmonary nodules in ultra-low-dose CT with iterative reconstruction compared to low dose CT. Sui X; Meinel FG; Song W; Xu X; Wang Z; Wang Y; Jin Z; Chen J; Vliegenthart R; Schoepf UJ Eur J Radiol; 2016 Mar; 85(3):564-70. PubMed ID: 26860668 [TBL] [Abstract][Full Text] [Related]
10. Screening for lung cancer using sub-millisievert chest CT with iterative reconstruction algorithm: image quality and nodule detectability. Zhang M; Qi W; Sun Y; Jiang Y; Liu X; Hong N Br J Radiol; 2018 Oct; 91(1090):20170658. PubMed ID: 29120665 [TBL] [Abstract][Full Text] [Related]
11. Lung nodules are reliably detectable on ultra-low-dose CT utilising model-based iterative reconstruction with radiation equivalent to plain radiography. Miller AR; Jackson D; Hui C; Deshpande S; Kuo E; Hamilton GS; Lau KK Clin Radiol; 2019 May; 74(5):409.e17-409.e22. PubMed ID: 30832990 [TBL] [Abstract][Full Text] [Related]
12. Influence of lung nodule margin on volume- and diameter-based reader variability in CT lung cancer screening. Han D; Heuvelmans MA; Vliegenthart R; Rook M; Dorrius MD; de Jonge GJ; Walter JE; van Ooijen PMA; de Koning HJ; Oudkerk M Br J Radiol; 2018 Oct; 91(1090):20170405. PubMed ID: 28972803 [TBL] [Abstract][Full Text] [Related]
13. Lung cancer probability in patients with CT-detected pulmonary nodules: a prespecified analysis of data from the NELSON trial of low-dose CT screening. Horeweg N; van Rosmalen J; Heuvelmans MA; van der Aalst CM; Vliegenthart R; Scholten ET; ten Haaf K; Nackaerts K; Lammers JW; Weenink C; Groen HJ; van Ooijen P; de Jong PA; de Bock GH; Mali W; de Koning HJ; Oudkerk M Lancet Oncol; 2014 Nov; 15(12):1332-41. PubMed ID: 25282285 [TBL] [Abstract][Full Text] [Related]
14. Detection of pulmonary nodules: a clinical study protocol to compare ultra-low dose chest CT and standard low-dose CT using ASIR-V. Ludwig M; Chipon E; Cohen J; Reymond E; Medici M; Cole A; Moreau Gaudry A; Ferretti G BMJ Open; 2019 Aug; 9(8):e025661. PubMed ID: 31420379 [TBL] [Abstract][Full Text] [Related]
15. Computer-aided detection (CAD) of solid pulmonary nodules in chest x-ray equivalent ultralow dose chest CT - first in-vivo results at dose levels of 0.13mSv. Messerli M; Kluckert T; Knitel M; Rengier F; Warschkow R; Alkadhi H; Leschka S; Wildermuth S; Bauer RW Eur J Radiol; 2016 Dec; 85(12):2217-2224. PubMed ID: 27842670 [TBL] [Abstract][Full Text] [Related]
16. Computer-aided pulmonary nodule detection - performance of two CAD systems at different CT dose levels. Hein PA; Rogalla P; Klessen C; Lembcke A; Romano VC Rofo; 2009 Nov; 181(11):1056-64. PubMed ID: 19536726 [TBL] [Abstract][Full Text] [Related]
17. CT screening and follow-up of lung nodules: effects of tube current-time setting and nodule size and density on detectability and of tube current-time setting on apparent size. Christe A; Torrente JC; Lin M; Yen A; Hallett R; Roychoudhury K; Schmitzberger F; Vock P; Roos J AJR Am J Roentgenol; 2011 Sep; 197(3):623-30. PubMed ID: 21862804 [TBL] [Abstract][Full Text] [Related]
18. Impact of dose reduction and iterative reconstruction algorithm on the detectability of pulmonary nodules by artificial intelligence. Schwyzer M; Messerli M; Eberhard M; Skawran S; Martini K; Frauenfelder T Diagn Interv Imaging; 2022 May; 103(5):273-280. PubMed ID: 34991993 [TBL] [Abstract][Full Text] [Related]
19. Comparison of three software systems for semi-automatic volumetry of pulmonary nodules on baseline and follow-up CT examinations. Zhao YR; van Ooijen PM; Dorrius MD; Heuvelmans M; de Bock GH; Vliegenthart R; Oudkerk M Acta Radiol; 2014 Jul; 55(6):691-8. PubMed ID: 24132766 [TBL] [Abstract][Full Text] [Related]
20. Validation of a deep learning computer aided system for CT based lung nodule detection, classification, and growth rate estimation in a routine clinical population. Murchison JT; Ritchie G; Senyszak D; Nijwening JH; van Veenendaal G; Wakkie J; van Beek EJR PLoS One; 2022; 17(5):e0266799. PubMed ID: 35511758 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]