These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
331 related articles for article (PubMed ID: 35238969)
21. Ultra-low-dose CT reconstructed with ASiR-V using SmartmA for pulmonary nodule detection and Lung-RADS classifications compared with low-dose CT. Ye K; Chen M; Li J; Zhu Q; Lu Y; Yuan H Clin Radiol; 2021 Feb; 76(2):156.e1-156.e8. PubMed ID: 33293025 [TBL] [Abstract][Full Text] [Related]
22. Prospective Pilot Evaluation of Radiologists and Computer-aided Pulmonary Nodule Detection on Ultra-low-Dose CT With Tin Filtration. Takahashi EA; Koo CW; White DB; Lindell RM; Sykes AG; Levin DL; Kuzo RS; Wolf M; Bogoni L; Carter RE; McCollough CH; Fletcher JG J Thorac Imaging; 2018 Nov; 33(6):396-401. PubMed ID: 30048344 [TBL] [Abstract][Full Text] [Related]
23. Ultra-Low Dose Chest CT with Denoising for Lung Nodule Detection. Kerpel A; Marom EM; Green M; Eifer M; Konen E; Mayer A; Betancourt Cuellar SL Isr Med Assoc J; 2021 Sep; 23(9):550-555. PubMed ID: 34472229 [TBL] [Abstract][Full Text] [Related]
24. Semi-automated volumetry of pulmonary nodules: Intra-individual comparison of standard dose and chest X-ray equivalent ultralow dose chest CT scans. Ottilinger T; Martini K; Baessler B; Sartoretti T; Bauer RW; Leschka S; Sartoretti E; Walter JE; Frauenfelder T; Wildermuth S; Alkadhi H; Messerli M Eur J Radiol; 2022 Nov; 156():110549. PubMed ID: 36272226 [TBL] [Abstract][Full Text] [Related]
25. Computer-aided diagnosis (CAD) of subsolid nodules: Evaluation of a commercial CAD system. Benzakoun J; Bommart S; Coste J; Chassagnon G; Lederlin M; Boussouar S; Revel MP Eur J Radiol; 2016 Oct; 85(10):1728-1734. PubMed ID: 27666609 [TBL] [Abstract][Full Text] [Related]
26. Performance of ultralow-dose CT with iterative reconstruction in lung cancer screening: limiting radiation exposure to the equivalent of conventional chest X-ray imaging. Huber A; Landau J; Ebner L; Bütikofer Y; Leidolt L; Brela B; May M; Heverhagen J; Christe A Eur Radiol; 2016 Oct; 26(10):3643-52. PubMed ID: 26813670 [TBL] [Abstract][Full Text] [Related]
27. Performance of computer-aided detection of pulmonary nodules in low-dose CT: comparison with double reading by nodule volume. Zhao Y; de Bock GH; Vliegenthart R; van Klaveren RJ; Wang Y; Bogoni L; de Jong PA; Mali WP; van Ooijen PM; Oudkerk M Eur Radiol; 2012 Oct; 22(10):2076-84. PubMed ID: 22814824 [TBL] [Abstract][Full Text] [Related]
28. Prospective intra-individual comparison of standard dose versus reduced-dose thoracic CT using hybrid and pure iterative reconstruction in a follow-up cohort of pulmonary nodules-Effect of detectability of pulmonary nodules with lowering dose based on nodule size, type and body mass index. Vardhanabhuti V; Pang CL; Tenant S; Taylor J; Hyde C; Roobottom C Eur J Radiol; 2017 Jun; 91():130-141. PubMed ID: 28629559 [TBL] [Abstract][Full Text] [Related]
29. Comparison of 0.3-mSv CT to Standard-Dose CT for Detection of Lung Nodules in Children and Young Adults With Cancer. Thapaliya S; Gilligan LA; Brady SL; Anton CG; Crotty EJ; Nasser MP; Geller JI; Pressey JG; Zhang B; Dillman JR; Trout AT AJR Am J Roentgenol; 2021 Dec; 217(6):1444-1451. PubMed ID: 34232694 [No Abstract] [Full Text] [Related]
30. Radiomics in the evaluation of lung nodules: Intrapatient concordance between full-dose and ultra-low-dose chest computed tomography. Autrusseau PA; Labani A; De Marini P; Leyendecker P; Hintzpeter C; Ortlieb AC; Calhoun M; Goldberg I; Roy C; Ohana M Diagn Interv Imaging; 2021 Apr; 102(4):233-239. PubMed ID: 33583753 [TBL] [Abstract][Full Text] [Related]
31. Occurrence and lung cancer probability of new solid nodules at incidence screening with low-dose CT: analysis of data from the randomised, controlled NELSON trial. Walter JE; Heuvelmans MA; de Jong PA; Vliegenthart R; van Ooijen PMA; Peters RB; Ten Haaf K; Yousaf-Khan U; van der Aalst CM; de Bock GH; Mali W; Groen HJM; de Koning HJ; Oudkerk M Lancet Oncol; 2016 Jul; 17(7):907-916. PubMed ID: 27283862 [TBL] [Abstract][Full Text] [Related]
32. A cloud-based computer-aided detection system improves identification of lung nodules on computed tomography scans of patients with extra-thoracic malignancies. Vassallo L; Traverso A; Agnello M; Bracco C; Campanella D; Chiara G; Fantacci ME; Lopez Torres E; Manca A; Saletta M; Giannini V; Mazzetti S; Stasi M; Cerello P; Regge D Eur Radiol; 2019 Jan; 29(1):144-152. PubMed ID: 29948089 [TBL] [Abstract][Full Text] [Related]
33. Pulmonary nodule visualization and evaluation of AI-based detection at various ultra-low-dose levels using photon-counting detector CT. Jungblut L; Euler A; Landsmann A; Englmaier V; Mergen V; Sefirovic M; Frauenfelder T Acta Radiol; 2024 Oct; 65(10):1238-1245. PubMed ID: 39279297 [TBL] [Abstract][Full Text] [Related]
34. Lung cancer screening with CT: evaluation of radiologists and different computer assisted detection software (CAD) as first and second readers for lung nodule detection at different dose levels. Christe A; Leidolt L; Huber A; Steiger P; Szucs-Farkas Z; Roos JE; Heverhagen JT; Ebner L Eur J Radiol; 2013 Dec; 82(12):e873-8. PubMed ID: 24074648 [TBL] [Abstract][Full Text] [Related]
35. Improving Image Quality and Nodule Characterization in Ultra-low-dose Lung CT with Deep Learning Image Reconstruction. Ma G; Dou Y; Dang S; Yu N; Guo Y; Han D; Fan Q Acad Radiol; 2024 Jul; 31(7):2944-2952. PubMed ID: 38429189 [TBL] [Abstract][Full Text] [Related]
37. The effect of radiation dose reduction on computer-aided detection (CAD) performance in a low-dose lung cancer screening population. Young S; Lo P; Kim G; Brown M; Hoffman J; Hsu W; Wahi-Anwar W; Flores C; Lee G; Noo F; Goldin J; McNitt-Gray M Med Phys; 2017 Apr; 44(4):1337-1346. PubMed ID: 28122122 [TBL] [Abstract][Full Text] [Related]
38. A feasibility study of pulmonary nodule detection by ultralow-dose CT with adaptive statistical iterative reconstruction-V technique. Ye K; Zhu Q; Li M; Lu Y; Yuan H Eur J Radiol; 2019 Oct; 119():108652. PubMed ID: 31521879 [TBL] [Abstract][Full Text] [Related]
39. Prospective evaluation of deep learning image reconstruction for Lung-RADS and automatic nodule volumetry on ultralow-dose chest CT. Yoo SJ; Park YS; Choi H; Kim DS; Goo JM; Yoon SH PLoS One; 2024; 19(2):e0297390. PubMed ID: 38386632 [TBL] [Abstract][Full Text] [Related]
40. Accuracy of two deep learning-based reconstruction methods compared with an adaptive statistical iterative reconstruction method for solid and ground-glass nodule volumetry on low-dose and ultra-low-dose chest computed tomography: A phantom study. Kim C; Kwack T; Kim W; Cha J; Yang Z; Yong HS PLoS One; 2022; 17(6):e0270122. PubMed ID: 35737734 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]