These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 35239171)
1. Polymyxin B Reduces Brain Injury in Ischemic Stroke Rat Through a Mechanism Involving Targeting ESCRT-III Machinery and RIPK1/RIPK3/MLKL Pathway. Tian J; Zhang YY; Peng YW; Liu B; Zhang XJ; Hu ZY; Hu CP; Luo XJ; Peng J J Cardiovasc Transl Res; 2022 Oct; 15(5):1129-1142. PubMed ID: 35239171 [TBL] [Abstract][Full Text] [Related]
2. Ligustroflavone reduces necroptosis in rat brain after ischemic stroke through targeting RIPK1/RIPK3/MLKL pathway. Zhang YY; Liu WN; Li YQ; Zhang XJ; Yang J; Luo XJ; Peng J Naunyn Schmiedebergs Arch Pharmacol; 2019 Sep; 392(9):1085-1095. PubMed ID: 31055628 [TBL] [Abstract][Full Text] [Related]
3. Caspofungin Suppresses Brain Cell Necroptosis in Ischemic Stroke Rats via Up-Regulation of Pellino3. Zhang YY; Tian J; Peng ZM; Liu B; Peng YW; Zhang XJ; Hu ZY; Luo XJ; Peng J Cardiovasc Drugs Ther; 2023 Feb; 37(1):9-23. PubMed ID: 34495409 [TBL] [Abstract][Full Text] [Related]
4. MALT1 promotes necroptosis in stroke rat brain via targeting the A20/RIPK3 pathway. Peng ZM; Zhang YY; Wei D; Zhang XJ; Liu B; Peng J; Luo XJ Arch Biochem Biophys; 2023 Feb; 735():109502. PubMed ID: 36603698 [TBL] [Abstract][Full Text] [Related]
5. ESCRT-III Acts Downstream of MLKL to Regulate Necroptotic Cell Death and Its Consequences. Gong YN; Guy C; Olauson H; Becker JU; Yang M; Fitzgerald P; Linkermann A; Green DR Cell; 2017 Apr; 169(2):286-300.e16. PubMed ID: 28388412 [TBL] [Abstract][Full Text] [Related]
6. Arctiin protects rat heart against ischemia/reperfusion injury via a mechanism involving reduction of necroptosis. Chen H; Tang LJ; Tu H; Zhou YJ; Li NS; Luo XJ; Peng J Eur J Pharmacol; 2020 May; 875():173053. PubMed ID: 32135123 [TBL] [Abstract][Full Text] [Related]
7. Telaprevir Improves Memory and Cognition in Mice Suffering Ischemic Stroke via Targeting MALT1-Mediated Calcium Overload and Necroptosis. Zhang YY; Peng JJ; Chen D; Liu HQ; Yao BF; Peng J; Luo XJ ACS Chem Neurosci; 2023 Sep; 14(17):3113-3124. PubMed ID: 37559405 [TBL] [Abstract][Full Text] [Related]
8. CAMK2/CaMKII activates MLKL in short-term starvation to facilitate autophagic flux. Zhan Q; Jeon J; Li Y; Huang Y; Xiong J; Wang Q; Xu TL; Li Y; Ji FH; Du G; Zhu MX Autophagy; 2022 Apr; 18(4):726-744. PubMed ID: 34282994 [TBL] [Abstract][Full Text] [Related]
9. Necrostatin-1 Prevents Necroptosis in Brains after Ischemic Stroke via Inhibition of RIPK1-Mediated RIPK3/MLKL Signaling. Deng XX; Li SS; Sun FY Aging Dis; 2019 Aug; 10(4):807-817. PubMed ID: 31440386 [TBL] [Abstract][Full Text] [Related]
10. Opposite Effects of Apoptotic and Necroptotic Cellular Pathways on Rotavirus Replication. Soliman M; Seo JY; Baek YB; Park JG; Kang MI; Cho KO; Park SI J Virol; 2022 Jan; 96(1):e0122221. PubMed ID: 34668777 [TBL] [Abstract][Full Text] [Related]
11. A cytosolic heat shock protein 90 and co-chaperone p23 complex activates RIPK3/MLKL during necroptosis of endothelial cells in acute respiratory distress syndrome. Yu X; Mao M; Liu X; Shen T; Li T; Yu H; Zhang J; Chen X; Zhao X; Zhu D J Mol Med (Berl); 2020 Apr; 98(4):569-583. PubMed ID: 32072232 [TBL] [Abstract][Full Text] [Related]
12. The neurotoxicant PCB-95 by increasing the neuronal transcriptional repressor REST down-regulates caspase-8 and increases Ripk1, Ripk3 and MLKL expression determining necroptotic neuronal death. Guida N; Laudati G; Serani A; Mascolo L; Molinaro P; Montuori P; Di Renzo G; Canzoniero LMT; Formisano L Biochem Pharmacol; 2017 Oct; 142():229-241. PubMed ID: 28676433 [TBL] [Abstract][Full Text] [Related]
13. Taurine attenuates valproic acid-induced hepatotoxicity via modulation of RIPK1/RIPK3/MLKL-mediated necroptosis signaling in mice. Khodayar MJ; Kalantari H; Khorsandi L; Ahangar N; Samimi A; Alidadi H Mol Biol Rep; 2021 May; 48(5):4153-4162. PubMed ID: 34032977 [TBL] [Abstract][Full Text] [Related]
14. RIPK3 interactions with MLKL and CaMKII mediate oligodendrocytes death in the developing brain. Qu Y; Tang J; Wang H; Li S; Zhao F; Zhang L; Richard Lu Q; Mu D Cell Death Dis; 2017 Feb; 8(2):e2629. PubMed ID: 28230861 [TBL] [Abstract][Full Text] [Related]
15. RIPK3 deficiency or catalytically inactive RIPK1 provides greater benefit than MLKL deficiency in mouse models of inflammation and tissue injury. Newton K; Dugger DL; Maltzman A; Greve JM; Hedehus M; Martin-McNulty B; Carano RA; Cao TC; van Bruggen N; Bernstein L; Lee WP; Wu X; DeVoss J; Zhang J; Jeet S; Peng I; McKenzie BS; Roose-Girma M; Caplazi P; Diehl L; Webster JD; Vucic D Cell Death Differ; 2016 Sep; 23(9):1565-76. PubMed ID: 27177019 [TBL] [Abstract][Full Text] [Related]
16. Caspase-8, receptor-interacting protein kinase 1 (RIPK1), and RIPK3 regulate retinoic acid-induced cell differentiation and necroptosis. Someda M; Kuroki S; Miyachi H; Tachibana M; Yonehara S Cell Death Differ; 2020 May; 27(5):1539-1553. PubMed ID: 31659279 [TBL] [Abstract][Full Text] [Related]
17. Z-DNA/RNA Binding Protein 1 Senses Mitochondrial DNA to Induce Receptor-Interacting Protein Kinase-3/Mixed Lineage Kinase Domain-Like-Driven Necroptosis in Developmental Sevoflurane Neurotoxicity. Wang WY; Yi WQ; Liu YS; Hu QY; Qian SJ; Liu JT; Mao H; Cai F; Yang HL Neuroscience; 2022 Dec; 507():99-111. PubMed ID: 36370933 [TBL] [Abstract][Full Text] [Related]
18. A toolbox for imaging RIPK1, RIPK3, and MLKL in mouse and human cells. Samson AL; Fitzgibbon C; Patel KM; Hildebrand JM; Whitehead LW; Rimes JS; Jacobsen AV; Horne CR; Gavin XJ; Young SN; Rogers KL; Hawkins ED; Murphy JM Cell Death Differ; 2021 Jul; 28(7):2126-2144. PubMed ID: 33589776 [TBL] [Abstract][Full Text] [Related]
19. RIPK1/RIPK3/MLKL-mediated necroptosis contributes to compression-induced rat nucleus pulposus cells death. Chen S; Lv X; Hu B; Shao Z; Wang B; Ma K; Lin H; Cui M Apoptosis; 2017 May; 22(5):626-638. PubMed ID: 28289909 [TBL] [Abstract][Full Text] [Related]
20. Preventing necroptosis by scavenging ROS production alleviates heat stress-induced intestinal injury. Li L; Tan H; Zou Z; Gong J; Zhou J; Peng N; Su L; Maegele M; Cai D; Gu Z Int J Hyperthermia; 2020; 37(1):517-530. PubMed ID: 32423248 [No Abstract] [Full Text] [Related] [Next] [New Search]