These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 35239305)
1. Phosphoproteome Profiling Using an Isobaric Carrier without the Need for Phosphoenrichment. Kwon Y; Lee S; Park N; Ju S; Shin S; Yoo S; Lee H; Lee C Anal Chem; 2022 Mar; 94(10):4192-4200. PubMed ID: 35239305 [TBL] [Abstract][Full Text] [Related]
2. Simultaneous quantification of protein phosphorylation sites using liquid chromatography-tandem mass spectrometry-based targeted proteomics: a linear algebra approach for isobaric phosphopeptides. Xu F; Yang T; Sheng Y; Zhong T; Yang M; Chen Y J Proteome Res; 2014 Dec; 13(12):5452-60. PubMed ID: 25403019 [TBL] [Abstract][Full Text] [Related]
3. Boosting to Amplify Signal with Isobaric Labeling (BASIL) Strategy for Comprehensive Quantitative Phosphoproteomic Characterization of Small Populations of Cells. Yi L; Tsai CF; Dirice E; Swensen AC; Chen J; Shi T; Gritsenko MA; Chu RK; Piehowski PD; Smith RD; Rodland KD; Atkinson MA; Mathews CE; Kulkarni RN; Liu T; Qian WJ Anal Chem; 2019 May; 91(9):5794-5801. PubMed ID: 30843680 [TBL] [Abstract][Full Text] [Related]
4. Mass Spectrometry-Based Proteomics for Analysis of Hydrophilic Phosphopeptides. Tsai CF; Smith JS; Eiger DS; Martin K; Liu T; Smith RD; Shi T; Rajagopal S; Jacobs JM Methods Mol Biol; 2021; 2259():247-257. PubMed ID: 33687720 [TBL] [Abstract][Full Text] [Related]
5. Multiplexed quantitative phosphoproteomics of cell line and tissue samples. Kreuzer J; Edwards A; Haas W Methods Enzymol; 2019; 626():41-65. PubMed ID: 31606085 [TBL] [Abstract][Full Text] [Related]
6. Tandem Mass Tag Labeling Facilitates Reversed-Phase Liquid Chromatography-Mass Spectrometry Analysis of Hydrophilic Phosphopeptides. Tsai CF; Smith JS; Krajewski K; Zhao R; Moghieb AM; Nicora CD; Xiong X; Moore RJ; Liu T; Smith RD; Jacobs JM; Rajagopal S; Shi T Anal Chem; 2019 Sep; 91(18):11606-11613. PubMed ID: 31418558 [TBL] [Abstract][Full Text] [Related]
7. Phosphoproteome profiling of hippocampal synaptic plasticity. Lim SH; Lee NY; Ryu JY; An JH; Lee GS; Min SS; Moon J; Lee JR Biochem Biophys Res Commun; 2022 Oct; 626():92-99. PubMed ID: 35981422 [TBL] [Abstract][Full Text] [Related]
8. iPhos: a toolkit to streamline the alkaline phosphatase-assisted comprehensive LC-MS phosphoproteome investigation. Yang TH; Chang HT; Hsiao ES; Sun JL; Wang CC; Wu HY; Liao PC; Wu WS BMC Bioinformatics; 2014; 15 Suppl 16(Suppl 16):S10. PubMed ID: 25521246 [TBL] [Abstract][Full Text] [Related]
9. Deep Profiling of Proteome and Phosphoproteome by Isobaric Labeling, Extensive Liquid Chromatography, and Mass Spectrometry. Bai B; Tan H; Pagala VR; High AA; Ichhaporia VP; Hendershot L; Peng J Methods Enzymol; 2017; 585():377-395. PubMed ID: 28109439 [TBL] [Abstract][Full Text] [Related]
10. Phosphoproteome analysis by in-gel isoelectric focusing and tandem mass spectrometry. Beranova-Giorgianni S; Desiderio DM; Giorgianni F Methods Mol Biol; 2009; 519():383-96. PubMed ID: 19381597 [TBL] [Abstract][Full Text] [Related]
11. Highly reproducible improved label-free quantitative analysis of cellular phosphoproteome by optimization of LC-MS/MS gradient and analytical column construction. Ahsan N; Belmont J; Chen Z; Clifton JG; Salomon AR J Proteomics; 2017 Aug; 165():69-74. PubMed ID: 28634120 [TBL] [Abstract][Full Text] [Related]
12. Improved method of phosphopeptides enrichment using biphasic phosphate-binding tag/C18 tip for versatile analysis of phosphorylation dynamics. Nabetani T; Kim YJ; Watanabe M; Ohashi Y; Kamiguchi H; Hirabayashi Y Proteomics; 2009 Dec; 9(24):5525-33. PubMed ID: 19834909 [TBL] [Abstract][Full Text] [Related]
13. Combining Metabolic ¹⁵N Labeling with Improved Tandem MOAC for Enhanced Probing of the Phosphoproteome. Thomas M; Huck N; Hoehenwarter W; Conrath U; Beckers GJ Methods Mol Biol; 2015; 1306():81-96. PubMed ID: 25930695 [TBL] [Abstract][Full Text] [Related]
14. Fractionation of Enriched Phosphopeptides Using pH/Acetonitrile-Gradient-Reversed-Phase Microcolumn Separation in Combination with LC-MS/MS Analysis. Ondrej M; Rehulka P; Rehulkova H; Kupcik R; Tichy A Int J Mol Sci; 2020 Jun; 21(11):. PubMed ID: 32492839 [TBL] [Abstract][Full Text] [Related]
15. Rapid and reproducible phosphopeptide enrichment by tandem metal oxide affinity chromatography: application to boron deficiency induced phosphoproteomics. Chen Y; Hoehenwarter W Plant J; 2019 Apr; 98(2):370-384. PubMed ID: 30589143 [TBL] [Abstract][Full Text] [Related]
16. Isotope-labeling and affinity enrichment of phosphopeptides for proteomic analysis using liquid chromatography-tandem mass spectrometry. Kota U; Chien KY; Goshe MB Methods Mol Biol; 2009; 564():303-21. PubMed ID: 19544030 [TBL] [Abstract][Full Text] [Related]
17. Mapping Plant Phosphoproteome with Improved Tandem MOAC and Label-Free Quantification. Chen Y; Liang X Methods Mol Biol; 2021; 2358():105-112. PubMed ID: 34270049 [TBL] [Abstract][Full Text] [Related]
18. Development and application of a phosphoproteomic method using electrostatic repulsion-hydrophilic interaction chromatography (ERLIC), IMAC, and LC-MS/MS analysis to study Marek's Disease Virus infection. Chien KY; Liu HC; Goshe MB J Proteome Res; 2011 Sep; 10(9):4041-53. PubMed ID: 21736374 [TBL] [Abstract][Full Text] [Related]
19. Macroporous reversed-phase separation of proteins combined with reversed-phase separation of phosphopeptides and tandem mass spectrometry for profiling the phosphoproteome of MDA-MB-231 cells. Ye X; Li L Electrophoresis; 2014 Dec; 35(24):3479-86. PubMed ID: 24888630 [TBL] [Abstract][Full Text] [Related]