BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 35239344)

  • 1. Strong Light-Matter Interactions between Gap Plasmons and Two-Dimensional Excitons under Ambient Conditions in a Deterministic Way.
    Yang L; Xie X; Yang J; Xue M; Wu S; Xiao S; Song F; Dang J; Sun S; Zuo Z; Chen J; Huang Y; Zhou X; Jin K; Wang C; Xu X
    Nano Lett; 2022 Mar; 22(6):2177-2186. PubMed ID: 35239344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strong Light-Matter Coupling between Plasmons in Individual Gold Bi-pyramids and Excitons in Mono- and Multilayer WSe
    Stührenberg M; Munkhbat B; Baranov DG; Cuadra J; Yankovich AB; Antosiewicz TJ; Olsson E; Shegai T
    Nano Lett; 2018 Sep; 18(9):5938-5945. PubMed ID: 30081635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strong plasmon-exciton coupling in transition metal dichalcogenides and plasmonic nanostructures.
    Sun J; Li Y; Hu H; Chen W; Zheng D; Zhang S; Xu H
    Nanoscale; 2021 Mar; 13(8):4408-4419. PubMed ID: 33605947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical Introduction and Manipulation of Plasmon-Exciton-Trion Coupling in a Si/WS
    Liu S; Deng F; Zhuang W; He X; Huang H; Chen JD; Pang H; Lan S
    ACS Nano; 2022 Sep; 16(9):14390-14401. PubMed ID: 36067213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manipulating Coherent Plasmon-Exciton Interaction in a Single Silver Nanorod on Monolayer WSe
    Zheng D; Zhang S; Deng Q; Kang M; Nordlander P; Xu H
    Nano Lett; 2017 Jun; 17(6):3809-3814. PubMed ID: 28530102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Room-Temperature Strong Coupling of Few-Exciton in a Monolayer WS
    Zhong J; Li JY; Liu J; Xiang Y; Feng H; Liu R; Li W; Wang XH
    Nano Lett; 2024 Feb; 24(5):1579-1586. PubMed ID: 38284987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Room-Temperature Strong Light-Matter Interaction with Active Control in Single Plasmonic Nanorod Coupled with Two-Dimensional Atomic Crystals.
    Wen J; Wang H; Wang W; Deng Z; Zhuang C; Zhang Y; Liu F; She J; Chen J; Chen H; Deng S; Xu N
    Nano Lett; 2017 Aug; 17(8):4689-4697. PubMed ID: 28665614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Revealing Strong Plasmon-Exciton Coupling between Nanogap Resonators and Two-Dimensional Semiconductors at Ambient Conditions.
    Qin J; Chen YH; Zhang Z; Zhang Y; Blaikie RJ; Ding B; Qiu M
    Phys Rev Lett; 2020 Feb; 124(6):063902. PubMed ID: 32109119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strong Linearly Polarized Light Emission by Coupling Out-of-Plane Exciton to Anisotropic Gap Plasmon Nanocavity.
    Xu K; Zou Z; Li W; Zhang L; Ge M; Wang T; Du W
    Nano Lett; 2024 Mar; 24(12):3647-3653. PubMed ID: 38488282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deterministic positioning and alignment of a single-molecule exciton in plasmonic nanodimer for strong coupling.
    Liu R; Geng M; Ai J; Fan X; Liu Z; Lu YW; Kuang Y; Liu JF; Guo L; Wu L
    Nat Commun; 2024 May; 15(1):4103. PubMed ID: 38755130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strong plasmon-exciton coupling between lithographically defined single metal nanoparticles and monolayer WSe
    Yan X; Wei H
    Nanoscale; 2020 May; 12(17):9708-9716. PubMed ID: 32323700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observation and Active Control of a Collective Polariton Mode and Polaritonic Band Gap in Few-Layer WS
    Liu W; Wang Y; Zheng B; Hwang M; Ji Z; Liu G; Li Z; Sorger VJ; Pan A; Agarwal R
    Nano Lett; 2020 Jan; 20(1):790-798. PubMed ID: 31846342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Orientation-Dependent Interaction between the Magnetic Plasmons in Gold Nanocups and the Excitons in WS
    Ai R; Xia X; Zhang H; Chui KK; Wang J
    ACS Nano; 2023 Feb; 17(3):2356-2367. PubMed ID: 36662164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Collective Strong Light-Matter Coupling in Hierarchical Microcavity-Plasmon-Exciton Systems.
    Bisht A; Cuadra J; Wersäll M; Canales A; Antosiewicz TJ; Shegai T
    Nano Lett; 2019 Jan; 19(1):189-196. PubMed ID: 30500202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrically Tunable Exciton-Plasmon Coupling in a WSe
    Dibos AM; Zhou Y; Jauregui LA; Scuri G; Wild DS; High AA; Taniguchi T; Watanabe K; Lukin MD; Kim P; Park H
    Nano Lett; 2019 Jun; 19(6):3543-3547. PubMed ID: 31117747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmon-trion and plasmon-exciton resonance energy transfer from a single plasmonic nanoparticle to monolayer MoS
    Wang M; Li W; Scarabelli L; Rajeeva BB; Terrones M; Liz-Marzán LM; Akinwande D; Zheng Y
    Nanoscale; 2017 Sep; 9(37):13947-13955. PubMed ID: 28782790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unified Scattering and Photoluminescence Spectra for Strong Plasmon-Exciton Coupling.
    Niu Y; Xu H; Wei H
    Phys Rev Lett; 2022 Apr; 128(16):167402. PubMed ID: 35522488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Greatly Enhanced Plasmon-Exciton Coupling in Si/WS
    Deng F; Huang H; Chen JD; Liu S; Pang H; He X; Lan S
    Nano Lett; 2022 Jan; 22(1):220-228. PubMed ID: 34962400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Room-temperature Tamm-plasmon exciton-polaritons with a WSe
    Lundt N; Klembt S; Cherotchenko E; Betzold S; Iff O; Nalitov AV; Klaas M; Dietrich CP; Kavokin AV; Höfling S; Schneider C
    Nat Commun; 2016 Oct; 7():13328. PubMed ID: 27796288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interfacially Bound Exciton State in a Hybrid Structure of Monolayer WS
    Cheng G; Li B; Zhao C; Yan X; Wang H; Lau KM; Wang J
    Nano Lett; 2018 Sep; 18(9):5640-5645. PubMed ID: 30139259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.