BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 35239492)

  • 1. IPP: An Intelligent Privacy-Preserving Scheme for Detecting Interactions in Genome Association Studies.
    Wang H; Wu X
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(1):455-464. PubMed ID: 35239492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Novel Multitasking Ant Colony Optimization Method for Detecting Multiorder SNP Interactions.
    Tuo S; Li C; Liu F; Zhu Y; Chen T; Feng Z; Liu H; Li A
    Interdiscip Sci; 2022 Dec; 14(4):814-832. PubMed ID: 35788965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-Adjusting Ant Colony Optimization Based on Information Entropy for Detecting Epistatic Interactions.
    Guan B; Zhao Y
    Genes (Basel); 2019 Feb; 10(2):. PubMed ID: 30717303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cloud computing for detecting high-order genome-wide epistatic interaction via dynamic clustering.
    Guo X; Meng Y; Yu N; Pan Y
    BMC Bioinformatics; 2014 Apr; 15():102. PubMed ID: 24717145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ant colony optimization with an automatic adjustment mechanism for detecting epistatic interactions.
    Guan B; Zhao Y; Sun W
    Comput Biol Chem; 2018 Dec; 77():354-362. PubMed ID: 30466044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Markov blanket-based method for detecting causal SNPs in GWAS.
    Han B; Park M; Chen XW
    BMC Bioinformatics; 2010 Apr; 11 Suppl 3(Suppl 3):S5. PubMed ID: 20438652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Introducing Heuristic Information Into Ant Colony Optimization Algorithm for Identifying Epistasis.
    Sun Y; Wang X; Shang J; Liu JX; Zheng CH; Lei X
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(4):1253-1261. PubMed ID: 30403637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ClusterMI: Detecting High-Order SNP Interactions Based on Clustering and Mutual Information.
    Cao X; Yu G; Liu J; Jia L; Wang J
    Int J Mol Sci; 2018 Aug; 19(8):. PubMed ID: 30072632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SEEI: spherical evolution with feedback mechanism for identifying epistatic interactions.
    Tang DY; Mao YJ; Zhao J; Yang J; Li SY; Ren FX; Zheng J
    BMC Genomics; 2024 May; 25(1):462. PubMed ID: 38735952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast detection of high-order epistatic interactions in genome-wide association studies using information theoretic measure.
    Leem S; Jeong HH; Lee J; Wee K; Sohn KA
    Comput Biol Chem; 2014 Jun; 50():19-28. PubMed ID: 24581733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Secure High-Order Gene Interaction Detecting Method for Infectious Diseases.
    Wang H; Yin H; Wu X
    Comput Math Methods Med; 2022; 2022():4471736. PubMed ID: 35495886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SNPHarvester: a filtering-based approach for detecting epistatic interactions in genome-wide association studies.
    Yang C; He Z; Wan X; Yang Q; Xue H; Yu W
    Bioinformatics; 2009 Feb; 25(4):504-11. PubMed ID: 19098029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SAMA: A Fast Self-Adaptive Memetic Algorithm for Detecting SNP-SNP Interactions Associated with Disease.
    Yin Y; Guan B; Zhao Y; Li Y
    Biomed Res Int; 2020; 2020():5610658. PubMed ID: 32908899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Utilizing Deep Learning and Genome Wide Association Studies for Epistatic-Driven Preterm Birth Classification in African-American Women.
    Fergus P; Montanez CC; Abdulaimma B; Lisboa P; Chalmers C; Pineles B
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(2):668-678. PubMed ID: 30183645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HiSSI: high-order SNP-SNP interactions detection based on efficient significant pattern and differential evolution.
    Cao X; Liu J; Guo M; Wang J
    BMC Med Genomics; 2019 Dec; 12(Suppl 7):139. PubMed ID: 31888641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EpiMOGA: An Epistasis Detection Method Based on a Multi-Objective Genetic Algorithm.
    Chen Y; Xu F; Pian C; Xu M; Kong L; Fang J; Li Z; Zhang L
    Genes (Basel); 2021 Jan; 12(2):. PubMed ID: 33525573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene, pathway and network frameworks to identify epistatic interactions of single nucleotide polymorphisms derived from GWAS data.
    Liu Y; Maxwell S; Feng T; Zhu X; Elston RC; Koyutürk M; Chance MR
    BMC Syst Biol; 2012; 6 Suppl 3(Suppl 3):S15. PubMed ID: 23281810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Privacy-Preserving Data Exploration in Genome-Wide Association Studies.
    Johnson A; Shmatikov V
    KDD; 2013 Aug; 2013():1079-1087. PubMed ID: 26691928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LEAP: biomarker inference through learning and evaluating association patterns.
    Jiang X; Neapolitan RE
    Genet Epidemiol; 2015 Mar; 39(3):173-84. PubMed ID: 25677188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Searching Genome-Wide Multi-Locus Associations for Multiple Diseases Based on Bayesian Inference.
    Guo X; Zhang J; Cai Z; Du DZ; Pan Y
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(3):600-610. PubMed ID: 26887006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.