These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 35239720)

  • 1. Pedestrian flow characteristics through different angled bends: Exploring the spatial variation of velocity.
    Hannun J; Dias C; Taha AH; Almutairi A; Alhajyaseen W; Sarvi M; Al-Bosta S
    PLoS One; 2022; 17(3):e0264635. PubMed ID: 35239720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Traffic flow in a crowd of pedestrians walking at different speeds.
    Fujita A; Feliciani C; Yanagisawa D; Nishinari K
    Phys Rev E; 2019 Jun; 99(6-1):062307. PubMed ID: 31330706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of weather and temperature on pedestrian walking characteristics on the zigzag bridge.
    Dong F; Li X; Xie Q; Ye R; Cao S
    Int J Biometeorol; 2022 Dec; 66(12):2541-2552. PubMed ID: 36255527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinematic cues in driver-pedestrian communication to support safe road crossing.
    Zach Noonan T; Gershon P; Domeyer J; Mehler B; Reimer B
    Accid Anal Prev; 2023 Nov; 192():107236. PubMed ID: 37531855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of walking speeds and success rates on mid-block crossings using virtual reality simulation.
    Figueroa-Medina AM; Valdés-Díaz D; Colucci-Ríos B; Cardona-Rodríguez N; Chamorro-Parejo A
    Accid Anal Prev; 2023 Apr; 183():106987. PubMed ID: 36736158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An exploratory study of pedestrian crossing speeds at midblock crossing in India using LiDAR.
    Vasudevan V; Tiwari A; Chakroborty P
    Traffic Inj Prev; 2022; 23(1):61-66. PubMed ID: 35020500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A virtual test system representing the distribution of pedestrian impact configurations for future vehicle front-end optimization.
    Li G; Yang J; Simms C
    Traffic Inj Prev; 2016 Jul; 17(5):515-23. PubMed ID: 26786188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bend sweep angle and Reynolds number effects on hemodynamics of s-shaped arteries.
    Niazmand H; Rajabi Jaghargh E
    Ann Biomed Eng; 2010 Sep; 38(9):2817-28. PubMed ID: 20428951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Introduction of frictional and turning function for pedestrian outflow with an obstacle.
    Yanagisawa D; Kimura A; Tomoeda A; Nishi R; Suma Y; Ohtsuka K; Nishinari K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):036110. PubMed ID: 19905183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Empirical investigation on safety constraints of merging pedestrian crowd through macroscopic and microscopic analysis.
    Shi X; Ye Z; Shiwakoti N; Tang D; Wang C; Wang W
    Accid Anal Prev; 2016 Oct; 95(Pt B):405-416. PubMed ID: 26519346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An evidence based method to calculate pedestrian crossing speeds in vehicle collisions (PCSC).
    Bastien C; Wellings R; Burnett B
    Accid Anal Prev; 2018 Sep; 118():66-76. PubMed ID: 29885928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adjustments of speed and path when avoiding collisions with another pedestrian.
    Huber M; Su YH; Krüger M; Faschian K; Glasauer S; Hermsdörfer J
    PLoS One; 2014; 9(2):e89589. PubMed ID: 24586895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An attempt to distinguish physical and socio-psychological influences on pedestrian bottleneck.
    Rzezonka J; Chraibi M; Seyfried A; Hein B; Schadschneider A
    R Soc Open Sci; 2022 Jun; 9(6):211822. PubMed ID: 35706660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The risk of pedestrian collisions with peripheral visual field loss.
    Peli E; Apfelbaum H; Berson EL; Goldstein RB
    J Vis; 2016 Dec; 16(15):5. PubMed ID: 27919101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Torsion and antero-posterior bending in the in vivo human tibia loading regimes during walking and running.
    Yang PF; Sanno M; Ganse B; Koy T; Brüggemann GP; Müller LP; Rittweger J
    PLoS One; 2014; 9(4):e94525. PubMed ID: 24732724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The interplay between gastrocnemius medialis force-length and force-velocity potentials, cumulative EMG activity and energy cost at speeds above and below the walk to run transition speed.
    Monte A; Tecchio P; Nardello F; Bachero-Mena B; Ardigò LP; Zamparo P
    Exp Physiol; 2023 Jan; 108(1):90-102. PubMed ID: 36394370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling pedestrian crossing speed profiles considering speed change behavior for the safety assessment of signalized intersections.
    Iryo-Asano M; Alhajyaseen WKM
    Accid Anal Prev; 2017 Nov; 108():332-342. PubMed ID: 28942043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visual information of vehicle velocity acquired by pedestrians involved in road crossing accidents.
    Yokoya Y; Soma H
    Accid Anal Prev; 2021 Mar; 151():105912. PubMed ID: 33352523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Corner height influences center of mass kinematics and path trajectory during turning.
    Fino PC; Lockhart TE; Fino NF
    J Biomech; 2015 Jan; 48(1):104-12. PubMed ID: 25468662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of the direction and speed strategies on pedestrian dynamics.
    Hu X; Chen T; Deng K; Wang G
    Chaos; 2022 Jun; 32(6):063140. PubMed ID: 35778137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.