These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 35239995)

  • 41. Integrating Sub-3 nm Plasmonic Gaps into Solid-State Nanopores.
    Shi X; Verschueren D; Pud S; Dekker C
    Small; 2018 May; 14(18):e1703307. PubMed ID: 29251411
    [TBL] [Abstract][Full Text] [Related]  

  • 42. N-Terminal Derivatization-Assisted Identification of Individual Amino Acids Using a Biological Nanopore Sensor.
    Wei X; Ma D; Zhang Z; Wang LY; Gray JL; Zhang L; Zhu T; Wang X; Lenhart BJ; Yin Y; Wang Q; Liu C
    ACS Sens; 2020 Jun; 5(6):1707-1716. PubMed ID: 32403927
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biological Nanopore Approach for Single-Molecule Protein Sequencing.
    Hu ZL; Huo MZ; Ying YL; Long YT
    Angew Chem Int Ed Engl; 2021 Jun; 60(27):14738-14749. PubMed ID: 33258524
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Is the Volume Exclusion Model Practicable for Nanopore Protein Sequencing?
    Huo MZ; Li MY; Ying YL; Long YT
    Anal Chem; 2021 Aug; 93(33):11364-11369. PubMed ID: 34379401
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nanopore-Based DNA Hard Drives for Rewritable and Secure Data Storage.
    Chen K; Zhu J; Bošković F; Keyser UF
    Nano Lett; 2020 May; 20(5):3754-3760. PubMed ID: 32223267
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Learning Shapelets for Improving Single-Molecule Nanopore Sensing.
    Wei ZX; Ying YL; Li MY; Yang J; Zhou JL; Wang HF; Yan BY; Long YT
    Anal Chem; 2019 Aug; 91(15):10033-10039. PubMed ID: 31083925
    [TBL] [Abstract][Full Text] [Related]  

  • 47. On-Chip Stretching, Sorting, and Electro-Optical Nanopore Sensing of Ultralong Human Genomic DNA.
    Zrehen A; Huttner D; Meller A
    ACS Nano; 2019 Dec; 13(12):14388-14398. PubMed ID: 31756076
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Label-Free Sensing of Human 8-Oxoguanine DNA Glycosylase Activity with a Nanopore.
    Shang J; Li Z; Liu L; Xi D; Wang H
    ACS Sens; 2018 Feb; 3(2):512-518. PubMed ID: 29363311
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Molecular Transport across the Ionic Liquid-Aqueous Electrolyte Interface in a MoS
    Shankla M; Aksimentiev A
    ACS Appl Mater Interfaces; 2020 Jun; 12(23):26624-26634. PubMed ID: 32393017
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nanopores in Graphene and Other 2D Materials: A Decade's Journey toward Sequencing.
    Qiu H; Zhou W; Guo W
    ACS Nano; 2021 Dec; 15(12):18848-18864. PubMed ID: 34841865
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cluster Channeling in Cascade Reactions.
    Gopich IV
    J Phys Chem B; 2021 Mar; 125(8):2061-2073. PubMed ID: 33596074
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Hydrogen Peroxide Sensing Based on Inner Surfaces Modification of Solid-State Nanopore.
    Zhu L; Gu D; Liu Q
    Nanoscale Res Lett; 2017 Dec; 12(1):422. PubMed ID: 28637348
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The Utility of Nanopore Technology for Protein and Peptide Sensing.
    Robertson JWF; Reiner JE
    Proteomics; 2018 Sep; 18(18):e1800026. PubMed ID: 29952121
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Concentration effects on capture rate and translocation configuration of nanopore-based DNA detection.
    Zhang Y; Zhao J; Kan Y; Ji R; Pan J; Huang W; Xu Z; Si W; Sha J
    Electrophoresis; 2020 Sep; 41(16-17):1523-1528. PubMed ID: 32529653
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Rapid and Accurate Determination of Nanopore Ionic Current Using a Steric Exclusion Model.
    Wilson J; Sarthak K; Si W; Gao L; Aksimentiev A
    ACS Sens; 2019 Mar; 4(3):634-644. PubMed ID: 30821441
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Real-Time Label-Free Kinetics Monitoring of Trypsin-Catalyzed Ester Hydrolysis by a Nanopore Sensor.
    Li M; Rauf A; Guo Y; Kang X
    ACS Sens; 2019 Nov; 4(11):2854-2857. PubMed ID: 31684727
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Translocation intermediates of ubiquitin through an α-hemolysin nanopore: implications for detection of post-translational modifications.
    Bonome EL; Cecconi F; Chinappi M
    Nanoscale; 2019 May; 11(20):9920-9930. PubMed ID: 31069350
    [TBL] [Abstract][Full Text] [Related]  

  • 58. "DNA-Dressed NAnopore" for complementary sequence detection.
    Mussi V; Fanzio P; Repetto L; Firpo G; Stigliani S; Tonini GP; Valbusa U
    Biosens Bioelectron; 2011 Nov; 29(1):125-31. PubMed ID: 21868212
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Low Noise Hybrid Nanopore with Engineered OmpG and Bilayer MoS
    Sen P; Hoi H; Gupta M
    ACS Appl Bio Mater; 2021 Jul; 4(7):5416-5424. PubMed ID: 35006727
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nanopore based detection of Bacillus thuringiensis HD-73 spores using aptamers and versatile DNA hairpins.
    Park J; Lim MC; Ryu H; Shim J; Kim SM; Kim YR; Jeon TJ
    Nanoscale; 2018 Jul; 10(25):11955-11961. PubMed ID: 29904756
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.