These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 35240158)

  • 1. Tailoring Fe
    Veksha A; Bin Mohamed Amrad MZ; Chen WQ; Binte Mohamed DK; Tiwari SB; Lim TT; Lisak G
    Chemosphere; 2022 Jun; 297():134148. PubMed ID: 35240158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Converting polyolefin plastics into few-walled carbon nanotubes via a tandem catalytic process: Importance of gas composition and system configuration.
    Veksha A; Chen W; Liang L; Lisak G
    J Hazard Mater; 2022 Aug; 435():128949. PubMed ID: 35472542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conversion of plastic waste into fuel oil using zeolite catalysts in a bench-scale pyrolysis reactor.
    Sivagami K; Kumar KV; Tamizhdurai P; Govindarajan D; Kumar M; Nambi I
    RSC Adv; 2022 Mar; 12(13):7612-7620. PubMed ID: 35424760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-value products from ex-situ catalytic pyrolysis of polypropylene waste using iron-based catalysts: the influence of support materials.
    Cai N; Xia S; Li X; Xiao H; Chen X; Chen Y; Bartocci P; Chen H; Williams PT; Yang H
    Waste Manag; 2021 Dec; 136():47-56. PubMed ID: 34637978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogen Production by Three-Stage (i) Pyrolysis, (ii) Catalytic Steam Reforming, and (iii) Water Gas Shift Processing of Waste Plastic.
    Alshareef R; Nahil MA; Williams PT
    Energy Fuels; 2023 Mar; 37(5):3894-3907. PubMed ID: 36897817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic upcycling of waste plastics over nanocellulose derived biochar catalyst for the coupling harvest of hydrogen and liquid fuels.
    Wang C; Lei H; Kong X; Zou R; Qian M; Zhao Y; Mateo W
    Sci Total Environ; 2021 Jul; 779():146463. PubMed ID: 34030226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of silica-alumina support ratio on H
    Zhang Y; Tao Y; Huang J; Williams P
    Waste Manag Res; 2017 Oct; 35(10):1045-1054. PubMed ID: 28789599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon nanotubes synthesis over coal ash based catalysts using polypropylene waste via CVD process: Influence of catalyst and reaction temperature.
    Chitriv SP; Saini V; Ratna D; P VR
    J Environ Manage; 2024 Aug; 366():121881. PubMed ID: 39018861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pyrolysis gas from biomass and plastics over X-Mo@MgO (X = Ni, Fe, Co) catalysts into functional carbon nanocomposite: Gas reforming reaction and proper process mechanisms.
    Dong H; Liu M; Yan X; Qian Z; Xie Y; Luo W; Lei C; Zhou Z
    Sci Total Environ; 2022 Jul; 831():154751. PubMed ID: 35341874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of Multi-Walled Carbon Nanotubes from Plastic Waste Using a Stainless-Steel CVD Reactor as Catalyst.
    Tripathi PK; Durbach S; Coville NJ
    Nanomaterials (Basel); 2017 Sep; 7(10):. PubMed ID: 28937596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CO
    Zhang X; Jiang Y; Kong G; Liu Q; Zhang G; Wang K; Cao T; Cheng Q; Zhang Z; Ji G; Han L
    J Hazard Mater; 2023 Oct; 460():132500. PubMed ID: 37708645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Waste plastics recycling for producing high-value carbon nanotubes: Investigation of the influence of Manganese content in Fe-based catalysts.
    He S; Xu Y; Zhang Y; Bell S; Wu C
    J Hazard Mater; 2021 Jan; 402():123726. PubMed ID: 33254760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stoichiometric-Ratio-Controlled Fe and Ni Non-Noble Metal Catalysts Supported on γ-Al
    Rajpoot A; Ahmad Khan A; Mohan I; Sengupta S; Ahmad E
    Chemphyschem; 2024 Oct; ():e202400670. PubMed ID: 39384544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Processing of flexible plastic packaging waste into pyrolysis oil and multi-walled carbon nanotubes for electrocatalytic oxygen reduction.
    Veksha A; Yin K; Moo JGS; Oh WD; Ahamed A; Chen WQ; Weerachanchai P; Giannis A; Lisak G
    J Hazard Mater; 2020 Apr; 387():121256. PubMed ID: 31951979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of high quality carbon nanotubes by catalytic pyrolysis of waste plastics using FeNi-based catalyst.
    Meng W; Xing B; Cheng S; Nie Y; Zeng H; Qu X; Xu B; Zhang C; Yu J; Won Hong S
    Waste Manag; 2024 Dec; 189():11-22. PubMed ID: 39142246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogen-rich gas production via steam gasification of food waste over basic oxides (MgO/CaO/SrO) promoted-Ni/Al
    Moogi S; Jang SH; Rhee GH; Ko CH; Choi YJ; Lee SH; Show PL; Andrew Lin KY; Park YK
    Chemosphere; 2022 Jan; 287(Pt 2):132224. PubMed ID: 34826918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature-dependent synthesis of multi-walled carbon nanotubes and hydrogen from plastic waste over A-site-deficient perovskite La
    Jia J; Veksha A; Lim TT; Lisak G
    Chemosphere; 2022 Mar; 291(Pt 2):132831. PubMed ID: 34767850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Al
    Liu R; Zhu T; Tong L; Xu W
    J Environ Sci (China); 2020 Apr; 90():138-145. PubMed ID: 32081310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-quality thin-multiwalled carbon nanotubes synthesized by Fe-Mo/MgO catalyst based on a sol-gel technique: synthesis, characterization, and field emission.
    Dubey P; Choi SK; Choi JH; Shin DH; Lee CJ
    J Nanosci Nanotechnol; 2010 Jun; 10(6):3998-4006. PubMed ID: 20355405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pyrolysis-catalysis of waste plastic using a nickel-stainless-steel mesh catalyst for high-value carbon products.
    Zhang Y; Nahil MA; Wu C; Williams PT
    Environ Technol; 2017 Nov; 38(22):2889-2897. PubMed ID: 28074718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.