These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 35240272)
1. Therapeutic induction of energy metabolism reduces neural tissue damage and increases microglia activation in severe spinal cord injury. Dolci S; Mannino L; Bottani E; Campanelli A; Di Chio M; Zorzin S; D'Arrigo G; Amenta A; Segala A; Paglia G; Denti V; Fumagalli G; Nisoli E; Valerio A; Verderio C; Martano G; Bifari F; Decimo I Pharmacol Res; 2022 Apr; 178():106149. PubMed ID: 35240272 [TBL] [Abstract][Full Text] [Related]
2. Mitochondrial-targeting antioxidant MitoQ modulates angiogenesis and promotes functional recovery after spinal cord injury. Huang T; Shen J; Bao B; Hu W; Sun Y; Zhu T; Lin J; Gao T; Li X; Zheng X Brain Res; 2022 Jul; 1786():147902. PubMed ID: 35381215 [TBL] [Abstract][Full Text] [Related]
3. Low-energy extracorporeal shock wave therapy for promotion of vascular endothelial growth factor expression and angiogenesis and improvement of locomotor and sensory functions after spinal cord injury. Yahata K; Kanno H; Ozawa H; Yamaya S; Tateda S; Ito K; Shimokawa H; Itoi E J Neurosurg Spine; 2016 Dec; 25(6):745-755. PubMed ID: 27367940 [TBL] [Abstract][Full Text] [Related]
4. Interleukin-4 and interleukin-13 induce different metabolic profiles in microglia and macrophages that relate with divergent outcomes after spinal cord injury. Amo-Aparicio J; Garcia-Garcia J; Francos-Quijorna I; Urpi A; Esteve-Codina A; Gut M; Quintana A; Lopez-Vales R Theranostics; 2021; 11(20):9805-9820. PubMed ID: 34815787 [No Abstract] [Full Text] [Related]
5. Ablation of the transcription factors E2F1-2 limits neuroinflammation and associated neurological deficits after contusive spinal cord injury. Wu J; Sabirzhanov B; Stoica BA; Lipinski MM; Zhao Z; Zhao S; Ward N; Yang D; Faden AI Cell Cycle; 2015; 14(23):3698-712. PubMed ID: 26505089 [TBL] [Abstract][Full Text] [Related]
6. Harpagide inhibits neuronal apoptosis and promotes axonal regeneration after spinal cord injury in rats by activating the Wnt/β-catenin signaling pathway. Rong Y; Liu W; Zhou Z; Gong F; Bai J; Fan J; Li L; Luo Y; Zhou Z; Cai W Brain Res Bull; 2019 May; 148():91-99. PubMed ID: 30940474 [TBL] [Abstract][Full Text] [Related]
9. Extremely low frequency magnetic field protects injured spinal cord from the microglia- and iron-induced tissue damage. Dey S; Bose S; Kumar S; Rathore R; Mathur R; Jain S Electromagn Biol Med; 2017; 36(4):330-340. PubMed ID: 29140736 [TBL] [Abstract][Full Text] [Related]
10. Lanthionine ketimine ester promotes locomotor recovery after spinal cord injury by reducing neuroinflammation and promoting axon growth. Kotaka K; Nagai J; Hensley K; Ohshima T Biochem Biophys Res Commun; 2017 Jan; 483(1):759-764. PubMed ID: 27965088 [TBL] [Abstract][Full Text] [Related]
11. The toll-like receptor 2 agonist Pam3CSK4 is neuroprotective after spinal cord injury. Stivers NS; Pelisch N; Orem BC; Williams J; Nally JM; Stirling DP Exp Neurol; 2017 Aug; 294():1-11. PubMed ID: 28445714 [TBL] [Abstract][Full Text] [Related]
12. Delayed microglial depletion after spinal cord injury reduces chronic inflammation and neurodegeneration in the brain and improves neurological recovery in male mice. Li Y; Ritzel RM; Khan N; Cao T; He J; Lei Z; Matyas JJ; Sabirzhanov B; Liu S; Li H; Stoica BA; Loane DJ; Faden AI; Wu J Theranostics; 2020; 10(25):11376-11403. PubMed ID: 33052221 [TBL] [Abstract][Full Text] [Related]
13. Melatonin improves functional recovery in female rats after acute spinal cord injury by modulating polarization of spinal microglial/macrophages. Zhang Y; Liu Z; Zhang W; Wu Q; Zhang Y; Liu Y; Guan Y; Chen X J Neurosci Res; 2019 Jul; 97(7):733-743. PubMed ID: 31006904 [TBL] [Abstract][Full Text] [Related]
14. Salidroside attenuates neuroinflammation and improves functional recovery after spinal cord injury through microglia polarization regulation. Wang C; Wang Q; Lou Y; Xu J; Feng Z; Chen Y; Tang Q; Zheng G; Zhang Z; Wu Y; Tian N; Zhou Y; Xu H; Zhang X J Cell Mol Med; 2018 Feb; 22(2):1148-1166. PubMed ID: 29148269 [TBL] [Abstract][Full Text] [Related]
15. The P2Y-like receptor GPR17 as a sensor of damage and a new potential target in spinal cord injury. Ceruti S; Villa G; Genovese T; Mazzon E; Longhi R; Rosa P; Bramanti P; Cuzzocrea S; Abbracchio MP Brain; 2009 Aug; 132(Pt 8):2206-18. PubMed ID: 19528093 [TBL] [Abstract][Full Text] [Related]
16. Distribution and polarization of microglia and macrophages at injured sites and the lumbar enlargement after spinal cord injury. Nakajima H; Honjoh K; Watanabe S; Kubota A; Matsumine A Neurosci Lett; 2020 Oct; 737():135152. PubMed ID: 32531528 [TBL] [Abstract][Full Text] [Related]
17. In vivo two-photon imaging reveals a role of progesterone in reducing axonal dieback after spinal cord injury in mice. Yang Z; Xie W; Ju F; Khan A; Zhang S Neuropharmacology; 2017 Apr; 116():30-37. PubMed ID: 27965141 [TBL] [Abstract][Full Text] [Related]
18. Polycaprolactone/polysialic acid hybrid, multifunctional nanofiber scaffolds for treatment of spinal cord injury. Zhang S; Wang XJ; Li WS; Xu XL; Hu JB; Kang XQ; Qi J; Ying XY; You J; Du YZ Acta Biomater; 2018 Sep; 77():15-27. PubMed ID: 30126591 [TBL] [Abstract][Full Text] [Related]
19. The p75 neurotrophin receptor is essential for neuronal cell survival and improvement of functional recovery after spinal cord injury. Chu GK; Yu W; Fehlings MG Neuroscience; 2007 Sep; 148(3):668-82. PubMed ID: 17706365 [TBL] [Abstract][Full Text] [Related]
20. Ginsenoside Rg3 Improves Recovery from Spinal Cord Injury in Rats via Suppression of Neuronal Apoptosis, Pro-Inflammatory Mediators, and Microglial Activation. Kim DK; Kweon KJ; Kim P; Kim HJ; Kim SS; Sohn NW; Maeng S; Shin JW Molecules; 2017 Jan; 22(1):. PubMed ID: 28085110 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]