These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 35240500)
1. Valorization of agro-industrial biowaste to green nanomaterials for wastewater treatment: Approaching green chemistry and circular economy principles. Omran BA; Baek KH J Environ Manage; 2022 Feb; 311():114806. PubMed ID: 35240500 [TBL] [Abstract][Full Text] [Related]
2. Green-synthesized nanocatalysts and nanomaterials for water treatment: Current challenges and future perspectives. Nasrollahzadeh M; Sajjadi M; Iravani S; Varma RS J Hazard Mater; 2021 Jan; 401():123401. PubMed ID: 32763697 [TBL] [Abstract][Full Text] [Related]
3. Emerging challenges for the agro-industrial food waste utilization: A review on food waste biorefinery. Kumar V; Sharma N; Umesh M; Selvaraj M; Al-Shehri BM; Chakraborty P; Duhan L; Sharma S; Pasrija R; Awasthi MK; Lakkaboyana SR; Andler R; Bhatnagar A; Maitra SS Bioresour Technol; 2022 Oct; 362():127790. PubMed ID: 35973569 [TBL] [Abstract][Full Text] [Related]
4. Synthesis and applications of biogenic nanomaterials in drinking and wastewater treatment. Gautam PK; Singh A; Misra K; Sahoo AK; Samanta SK J Environ Manage; 2019 Feb; 231():734-748. PubMed ID: 30408767 [TBL] [Abstract][Full Text] [Related]
5. Valorization of agro-industrial wastes for biorefinery process and circular bioeconomy: A critical review. Yaashikaa PR; Senthil Kumar P; Varjani S Bioresour Technol; 2022 Jan; 343():126126. PubMed ID: 34673193 [TBL] [Abstract][Full Text] [Related]
6. Biowaste- and nature-derived (nano)materials: Biosynthesis, stability and environmental applications. Ashrafi G; Nasrollahzadeh M; Jaleh B; Sajjadi M; Ghafuri H Adv Colloid Interface Sci; 2022 Mar; 301():102599. PubMed ID: 35066374 [TBL] [Abstract][Full Text] [Related]
7. Coffee biowaste valorization within circular economy: an evaluation method of spent coffee grounds potentials for mortar production. La Scalia G; Saeli M; Miglietta PP; Micale R Int J Life Cycle Assess; 2021; 26(9):1805-1815. PubMed ID: 34566270 [TBL] [Abstract][Full Text] [Related]
9. Agro-waste to sustainable energy: A green strategy of converting agricultural waste to nano-enabled energy applications. Sonu ; Rani GM; Pathania D; Abhimanyu ; Umapathi R; Rustagi S; Huh YS; Gupta VK; Kaushik A; Chaudhary V Sci Total Environ; 2023 Jun; 875():162667. PubMed ID: 36894105 [TBL] [Abstract][Full Text] [Related]
10. Unlocking the potential of biosurfactants: Production, applications, market challenges, and opportunities for agro-industrial waste valorization. Santos BLP; Vieira IMM; Ruzene DS; Silva DP Environ Res; 2024 Mar; 244():117879. PubMed ID: 38086503 [TBL] [Abstract][Full Text] [Related]
11. Valorization of biowastes for clean energy production, environmental depollution and soil fertility. Srivastava RK; Shetti NP; Reddy KR; Nadagouda MN; Badawi M; Bonilla-Petriciolet A; Aminabhavi TM J Environ Manage; 2023 Apr; 332():117410. PubMed ID: 36731419 [TBL] [Abstract][Full Text] [Related]
12. Microalgae as tools for bio-circular-green economy: Zero-waste approaches for sustainable production and biorefineries of microalgal biomass. Cheirsilp B; Maneechote W; Srinuanpan S; Angelidaki I Bioresour Technol; 2023 Nov; 387():129620. PubMed ID: 37544540 [TBL] [Abstract][Full Text] [Related]
13. Opportunities in the microbial valorization of sugar industrial organic waste to biodegradable smart food packaging materials. Jayasekara S; Dissanayake L; Jayakody LN Int J Food Microbiol; 2022 Sep; 377():109785. PubMed ID: 35752069 [TBL] [Abstract][Full Text] [Related]
14. Waste-to-chemicals: Green solutions for bioeconomy markets. Mishra K; Siwal SS; Nayaka SC; Guan Z; Thakur VK Sci Total Environ; 2023 Aug; 887():164006. PubMed ID: 37172858 [TBL] [Abstract][Full Text] [Related]
15. Engineered nanomaterials for (waste)water treatment - A scientometric assessment and sustainability aspects. Davarazar M; Kamali M; Lopes I NanoImpact; 2021 Apr; 22():100316. PubMed ID: 35559973 [TBL] [Abstract][Full Text] [Related]
16. Carbon-based sustainable nanomaterials for water treatment: State-of-art and future perspectives. Nasrollahzadeh M; Sajjadi M; Iravani S; Varma RS Chemosphere; 2021 Jan; 263():128005. PubMed ID: 33297038 [TBL] [Abstract][Full Text] [Related]
17. Valorization of agro-industry residues in the building and environmental sector: A review. Ricciardi P; Cillari G; Carnevale Miino M; Collivignarelli MC Waste Manag Res; 2020 May; 38(5):487-513. PubMed ID: 32089127 [TBL] [Abstract][Full Text] [Related]
18. Yeast-driven valorization of agro-industrial wastewater: an overview. Amara NI; Chukwuemeka ES; Obiajulu NO; Chukwuma OJ Environ Monit Assess; 2023 Sep; 195(10):1252. PubMed ID: 37768404 [TBL] [Abstract][Full Text] [Related]
19. A new approach of ecologically based life cycle assessment for biological wastewater treatments focused on energy recovery goals. Meneses-Jácome A; Ruiz-Colorado AA Environ Sci Pollut Res Int; 2021 Jan; 28(4):4195-4208. PubMed ID: 32935211 [TBL] [Abstract][Full Text] [Related]
20. A comprehensive review on the properties and functionalities of biodegradable and semibiodegradable food packaging materials. Weligama Thuppahige VT; Karim MA Compr Rev Food Sci Food Saf; 2022 Jan; 21(1):689-718. PubMed ID: 35041246 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]