These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 35240564)
1. Effective co-treatment of synthetic acid mine drainage and domestic sewage using multi-unit passive treatment system supplemented with silage fermentation broth as carbon source. Wang H; Zhang M; Lv Q; Xue J; Yang J; Han X J Environ Manage; 2022 May; 310():114803. PubMed ID: 35240564 [TBL] [Abstract][Full Text] [Related]
2. Preparation of metal-resistant immobilized sulfate reducing bacteria beads for acid mine drainage treatment. Zhang M; Wang H; Han X Chemosphere; 2016 Jul; 154():215-223. PubMed ID: 27058913 [TBL] [Abstract][Full Text] [Related]
3. High rate of biological removal of sulfate, organic matter, and metals in UASB reactor to treat synthetic acid mine drainage and cheese whey wastewater as carbon source. Sampaio GF; Dos Santos AM; da Costa PR; Rodriguez RP; Sancinetti GP Water Environ Res; 2020 Feb; 92(2):245-254. PubMed ID: 31472092 [TBL] [Abstract][Full Text] [Related]
4. Removal of sulfate and heavy metals by sulfate-reducing bacteria in an expanded granular sludge bed reactor. Liu Z; Li L; Li Z; Tian X Environ Technol; 2018 Jul; 39(14):1814-1822. PubMed ID: 28592226 [TBL] [Abstract][Full Text] [Related]
5. Bioremediation of acid mine drainage using sulfate-reducing wetland bioreactor: Filling substrates influence, sulfide oxidation and microbial community. Wang H; Zhang M; Dong P; Xue J; Liu L Chemosphere; 2024 Feb; 349():140789. PubMed ID: 38013025 [TBL] [Abstract][Full Text] [Related]
6. [Rice straw and sewage sludge as carbon sources for sulfate-reducing bacteria treating acid mine drainage]. Su Y; Wang J; Peng SC; Yue ZB; Chen TH; Jin J Huan Jing Ke Xue; 2010 Aug; 31(8):1858-63. PubMed ID: 21090305 [TBL] [Abstract][Full Text] [Related]
7. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
8. The influence of complex fermentation broth on denitrification of saline sewage in constructed wetlands by heterotrophic nitrifying/aerobic denitrifying bacterial communities. Fu G; Yu T; Huangshen L; Han J Bioresour Technol; 2018 Feb; 250():290-298. PubMed ID: 29174907 [TBL] [Abstract][Full Text] [Related]
9. Bioremediation of acid mine drainage coupled with domestic wastewater treatment. Sánchez-Andrea I; Triana D; Sanz JL Water Sci Technol; 2012; 66(11):2425-31. PubMed ID: 23032774 [TBL] [Abstract][Full Text] [Related]
10. Sulfate and metals removal from acid mine drainage in a horizontal anaerobic immobilized biomass (HAIB) reactor. Braga JK; de Melo Júnior OM; Rodriguez RP; Sancinetti GP J Environ Sci Health A Tox Hazard Subst Environ Eng; 2020; 55(12):1436-1449. PubMed ID: 32812506 [TBL] [Abstract][Full Text] [Related]
11. Performance and microbial community dynamics of a sulfate-reducing bioreactor treating coal generated acid mine drainage. Burns AS; Pugh CW; Segid YT; Behum PT; Lefticariu L; Bender KS Biodegradation; 2012 Jun; 23(3):415-29. PubMed ID: 22083105 [TBL] [Abstract][Full Text] [Related]
12. Comparison of the efficiency of chitinous and ligneous substrates in metal and sulfate removal from mining-influenced water. Pinto PX; Al-Abed SR; McKernan J J Environ Manage; 2018 Dec; 227():321-328. PubMed ID: 30199728 [TBL] [Abstract][Full Text] [Related]
13. Sulfate and metal removal from acid mine drainage using sugarcane vinasse as electron donor: Performance and microbial community of the down-flow structured-bed bioreactor. Nogueira EW; Gouvêa de Godoi LA; Marques Yabuki LN; Brucha G; Zamariolli Damianovic MHR Bioresour Technol; 2021 Jun; 330():124968. PubMed ID: 33744733 [TBL] [Abstract][Full Text] [Related]
14. Co-treatment of acid mine drainage with municipal wastewater: performance evaluation. Hughes TA; Gray NF Environ Sci Pollut Res Int; 2013 Nov; 20(11):7863-77. PubMed ID: 23161500 [TBL] [Abstract][Full Text] [Related]
15. Passive bioremediation technology incorporating lignocellulosic spent mushroom compost and limestone for metal- and sulfate-rich acid mine drainage. Muhammad SN; Kusin FM; Md Zahar MS; Mohamat Yusuff F; Halimoon N Environ Technol; 2017 Aug; 38(16):2003-2012. PubMed ID: 27745113 [TBL] [Abstract][Full Text] [Related]
16. A preliminary study to design a floating treatment wetland for remediating acid mine drainage-impacted water using vetiver grass (Chrysopogon zizanioides). Kiiskila JD; Sarkar D; Feuerstein KA; Datta R Environ Sci Pollut Res Int; 2017 Dec; 24(36):27985-27993. PubMed ID: 28990146 [TBL] [Abstract][Full Text] [Related]
17. Semi-passive in-situ pilot scale bioreactor successfully removed sulfate and metals from mine impacted water under subarctic climatic conditions. Nielsen G; Hatam I; Abuan KA; Janin A; Coudert L; Blais JF; Mercier G; Baldwin SA Water Res; 2018 Sep; 140():268-279. PubMed ID: 29723816 [TBL] [Abstract][Full Text] [Related]
18. Silage supports sulfate reduction in the treatment of metals- and sulfate-containing waste waters. Wakeman KD; Erving L; Riekkola-Vanhanen ML; Puhakka JA Water Res; 2010 Sep; 44(17):4932-9. PubMed ID: 20708212 [TBL] [Abstract][Full Text] [Related]
19. Heavy metal and sulfate removal from sulfate-rich synthetic mine drainages using sulfate reducing bacteria. Hwang SK; Jho EH Sci Total Environ; 2018 Sep; 635():1308-1316. PubMed ID: 29710584 [TBL] [Abstract][Full Text] [Related]
20. The effect of acidic pH and presence of metals as parameters in establishing a sulfidogenic process in anaerobic reactor. Vieira BF; Couto PT; Sancinetti GP; Klein B; van Zyl D; Rodriguez RP J Environ Sci Health A Tox Hazard Subst Environ Eng; 2016 Aug; 51(10):793-7. PubMed ID: 27222283 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]