These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 35240778)

  • 61. Electrically Driven Hot-Carrier Generation and Above-Threshold Light Emission in Plasmonic Tunnel Junctions.
    Cui L; Zhu Y; Abbasi M; Ahmadivand A; Gerislioglu B; Nordlander P; Natelson D
    Nano Lett; 2020 Aug; 20(8):6067-6075. PubMed ID: 32568541
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Control of radiative processes using tunable plasmonic nanopatch antennas.
    Rose A; Hoang TB; McGuire F; Mock JJ; Ciracì C; Smith DR; Mikkelsen MH
    Nano Lett; 2014 Aug; 14(8):4797-802. PubMed ID: 25020029
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Photoinduced Force Mapping of Plasmonic Nanostructures.
    Tumkur TU; Yang X; Cerjan B; Halas NJ; Nordlander P; Thomann I
    Nano Lett; 2016 Dec; 16(12):7942-7949. PubMed ID: 27960494
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Including Tunneling in Non-Born-Oppenheimer Simulations.
    Zheng J; Meana-Pañeda R; Truhlar DG
    J Phys Chem Lett; 2014 Jun; 5(11):2039-43. PubMed ID: 26273892
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Photoemission electron microscopy as a tool for the investigation of optical near fields.
    Cinchetti M; Gloskovskii A; Nepjiko SA; Schönhense G; Rochholz H; Kreiter M
    Phys Rev Lett; 2005 Jul; 95(4):047601. PubMed ID: 16090841
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Plasmonic core-shell nano-heterostructures with temperature-dependent optical nonlinearity.
    Pang C; Li R; Dong N; Li Z; Wang J; Ren F; Chen F
    Nanoscale; 2020 Nov; 12(45):22995-23002. PubMed ID: 33241823
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Plasmonic field enhancement of individual nanoparticles by correlated scanning and photoemission electron microscopy.
    Peppernick SJ; Joly AG; Beck KM; Hess WP
    J Chem Phys; 2011 Jan; 134(3):034507. PubMed ID: 21261368
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Plasmonic nanoparticle simulations and inverse design using machine learning.
    He J; He C; Zheng C; Wang Q; Ye J
    Nanoscale; 2019 Sep; 11(37):17444-17459. PubMed ID: 31531431
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Optical-Field-Driven Electron Tunneling in Metal-Insulator-Metal Nanojunction.
    Zhou S; Guo X; Chen K; Cole MT; Wang X; Li Z; Dai J; Li C; Dai Q
    Adv Sci (Weinh); 2021 Dec; 8(24):e2101572. PubMed ID: 34708551
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Direct Experimental Access to the Nonadiabatic Initial Momentum Offset upon Tunnel Ionization.
    Eckart S; Fehre K; Eicke N; Hartung A; Rist J; Trabert D; Strenger N; Pier A; Schmidt LPH; Jahnke T; Schöffler MS; Lein M; Kunitski M; Dörner R
    Phys Rev Lett; 2018 Oct; 121(16):163202. PubMed ID: 30387676
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Enhancement of Radiative Plasmon Decay by Hot Electron Tunneling.
    Wang X; Braun K; Zhang D; Peisert H; Adler H; Chassé T; Meixner AJ
    ACS Nano; 2015 Aug; 9(8):8176-83. PubMed ID: 26200215
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Universal Near-Infrared and Mid-Infrared Optical Modulation for Ultrafast Pulse Generation Enabled by Colloidal Plasmonic Semiconductor Nanocrystals.
    Guo Q; Yao Y; Luo ZC; Qin Z; Xie G; Liu M; Kang J; Zhang S; Bi G; Liu X; Qiu J
    ACS Nano; 2016 Oct; 10(10):9463-9469. PubMed ID: 27622468
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Plasmonic antennas as design elements for coherent ultrafast nanophotonics.
    Brinks D; Castro-Lopez M; Hildner R; van Hulst NF
    Proc Natl Acad Sci U S A; 2013 Nov; 110(46):18386-90. PubMed ID: 24163355
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Probing the Near-Field of Second-Harmonic Light around Plasmonic Nanoantennas.
    Metzger B; Hentschel M; Giessen H
    Nano Lett; 2017 Mar; 17(3):1931-1937. PubMed ID: 28182426
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Plasmonic Nano-Oven by Concatenation of Multishell Photothermal Enhancement.
    Meng L; Yu R; Qiu M; García de Abajo FJ
    ACS Nano; 2017 Aug; 11(8):7915-7924. PubMed ID: 28727409
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Anomalous Spectral Shift of Near- and Far-Field Plasmonic Resonances in Nanogaps.
    Lombardi A; Demetriadou A; Weller L; Andrae P; Benz F; Chikkaraddy R; Aizpurua J; Baumberg JJ
    ACS Photonics; 2016 Mar; 3(3):471-477. PubMed ID: 27077075
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Nonadiabatic effects in the double ionization of atoms driven by a circularly polarized laser pulse.
    Dubois J; Chandre C; Uzer T
    Phys Rev E; 2020 Sep; 102(3-1):032218. PubMed ID: 33075872
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Nanoscale Electrical Excitation of Distinct Modes in Plasmonic Waveguides.
    Ochs M; Zurak L; Krauss E; Meier J; Emmerling M; Kullock R; Hecht B
    Nano Lett; 2021 May; 21(10):4225-4230. PubMed ID: 33929199
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Revealing the quantum regime in tunnelling plasmonics.
    Savage KJ; Hawkeye MM; Esteban R; Borisov AG; Aizpurua J; Baumberg JJ
    Nature; 2012 Nov; 491(7425):574-7. PubMed ID: 23135399
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Ultrafast strong-field photoemission from plasmonic nanoparticles.
    Dombi P; Hörl A; Rácz P; Márton I; Trügler A; Krenn JR; Hohenester U
    Nano Lett; 2013 Feb; 13(2):674-8. PubMed ID: 23339740
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.