These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
65. Photoemission electron microscopy as a tool for the investigation of optical near fields. Cinchetti M; Gloskovskii A; Nepjiko SA; Schönhense G; Rochholz H; Kreiter M Phys Rev Lett; 2005 Jul; 95(4):047601. PubMed ID: 16090841 [TBL] [Abstract][Full Text] [Related]
66. Plasmonic core-shell nano-heterostructures with temperature-dependent optical nonlinearity. Pang C; Li R; Dong N; Li Z; Wang J; Ren F; Chen F Nanoscale; 2020 Nov; 12(45):22995-23002. PubMed ID: 33241823 [TBL] [Abstract][Full Text] [Related]
67. Plasmonic field enhancement of individual nanoparticles by correlated scanning and photoemission electron microscopy. Peppernick SJ; Joly AG; Beck KM; Hess WP J Chem Phys; 2011 Jan; 134(3):034507. PubMed ID: 21261368 [TBL] [Abstract][Full Text] [Related]
68. Plasmonic nanoparticle simulations and inverse design using machine learning. He J; He C; Zheng C; Wang Q; Ye J Nanoscale; 2019 Sep; 11(37):17444-17459. PubMed ID: 31531431 [TBL] [Abstract][Full Text] [Related]
69. Optical-Field-Driven Electron Tunneling in Metal-Insulator-Metal Nanojunction. Zhou S; Guo X; Chen K; Cole MT; Wang X; Li Z; Dai J; Li C; Dai Q Adv Sci (Weinh); 2021 Dec; 8(24):e2101572. PubMed ID: 34708551 [TBL] [Abstract][Full Text] [Related]
70. Direct Experimental Access to the Nonadiabatic Initial Momentum Offset upon Tunnel Ionization. Eckart S; Fehre K; Eicke N; Hartung A; Rist J; Trabert D; Strenger N; Pier A; Schmidt LPH; Jahnke T; Schöffler MS; Lein M; Kunitski M; Dörner R Phys Rev Lett; 2018 Oct; 121(16):163202. PubMed ID: 30387676 [TBL] [Abstract][Full Text] [Related]
71. Enhancement of Radiative Plasmon Decay by Hot Electron Tunneling. Wang X; Braun K; Zhang D; Peisert H; Adler H; Chassé T; Meixner AJ ACS Nano; 2015 Aug; 9(8):8176-83. PubMed ID: 26200215 [TBL] [Abstract][Full Text] [Related]
72. Universal Near-Infrared and Mid-Infrared Optical Modulation for Ultrafast Pulse Generation Enabled by Colloidal Plasmonic Semiconductor Nanocrystals. Guo Q; Yao Y; Luo ZC; Qin Z; Xie G; Liu M; Kang J; Zhang S; Bi G; Liu X; Qiu J ACS Nano; 2016 Oct; 10(10):9463-9469. PubMed ID: 27622468 [TBL] [Abstract][Full Text] [Related]
73. Plasmonic antennas as design elements for coherent ultrafast nanophotonics. Brinks D; Castro-Lopez M; Hildner R; van Hulst NF Proc Natl Acad Sci U S A; 2013 Nov; 110(46):18386-90. PubMed ID: 24163355 [TBL] [Abstract][Full Text] [Related]
74. Probing the Near-Field of Second-Harmonic Light around Plasmonic Nanoantennas. Metzger B; Hentschel M; Giessen H Nano Lett; 2017 Mar; 17(3):1931-1937. PubMed ID: 28182426 [TBL] [Abstract][Full Text] [Related]
75. Plasmonic Nano-Oven by Concatenation of Multishell Photothermal Enhancement. Meng L; Yu R; Qiu M; García de Abajo FJ ACS Nano; 2017 Aug; 11(8):7915-7924. PubMed ID: 28727409 [TBL] [Abstract][Full Text] [Related]
76. Anomalous Spectral Shift of Near- and Far-Field Plasmonic Resonances in Nanogaps. Lombardi A; Demetriadou A; Weller L; Andrae P; Benz F; Chikkaraddy R; Aizpurua J; Baumberg JJ ACS Photonics; 2016 Mar; 3(3):471-477. PubMed ID: 27077075 [TBL] [Abstract][Full Text] [Related]
77. Nonadiabatic effects in the double ionization of atoms driven by a circularly polarized laser pulse. Dubois J; Chandre C; Uzer T Phys Rev E; 2020 Sep; 102(3-1):032218. PubMed ID: 33075872 [TBL] [Abstract][Full Text] [Related]
78. Nanoscale Electrical Excitation of Distinct Modes in Plasmonic Waveguides. Ochs M; Zurak L; Krauss E; Meier J; Emmerling M; Kullock R; Hecht B Nano Lett; 2021 May; 21(10):4225-4230. PubMed ID: 33929199 [TBL] [Abstract][Full Text] [Related]