BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 35241367)

  • 1. Mitochondrial Apoptotic Signaling Involvement in Remodeling During Myogenesis and Skeletal Muscle Atrophy.
    Rahman FA; Quadrilatero J
    Semin Cell Dev Biol; 2023 Jul; 143():66-74. PubMed ID: 35241367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitophagy regulates mitochondrial network signaling, oxidative stress, and apoptosis during myoblast differentiation.
    Baechler BL; Bloemberg D; Quadrilatero J
    Autophagy; 2019 Sep; 15(9):1606-1619. PubMed ID: 30859901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Apoptosis in skeletal muscle and its relevance to atrophy.
    Dupont-Versteegden EE
    World J Gastroenterol; 2006 Dec; 12(46):7463-6. PubMed ID: 17167834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Apoptotic signaling in skeletal muscle fibers during atrophy.
    Sandri M
    Curr Opin Clin Nutr Metab Care; 2002 May; 5(3):249-53. PubMed ID: 11953649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial signaling contributes to disuse muscle atrophy.
    Powers SK; Wiggs MP; Duarte JA; Zergeroglu AM; Demirel HA
    Am J Physiol Endocrinol Metab; 2012 Jul; 303(1):E31-9. PubMed ID: 22395111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Role of Exercise and TFAM in Preventing Skeletal Muscle Atrophy.
    Theilen NT; Kunkel GH; Tyagi SC
    J Cell Physiol; 2017 Sep; 232(9):2348-2358. PubMed ID: 27966783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondria in skeletal muscle: adaptable rheostats of apoptotic susceptibility.
    Adhihetty PJ; O'Leary MF; Hood DA
    Exerc Sport Sci Rev; 2008 Jul; 36(3):116-21. PubMed ID: 18580291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of alterations in mitochondrial dynamics and PGC-1α over-expression in fast muscle atrophy following hindlimb unloading.
    Cannavino J; Brocca L; Sandri M; Grassi B; Bottinelli R; Pellegrino MA
    J Physiol; 2015 Apr; 593(8):1981-95. PubMed ID: 25565653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Role of Calpains in Skeletal Muscle Remodeling with Exercise and Inactivity-induced Atrophy.
    Hyatt HW; Powers SK
    Int J Sports Med; 2020 Dec; 41(14):994-1008. PubMed ID: 32679598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel in vitro model for the assessment of postnatal myonuclear accretion.
    Kneppers A; Verdijk L; de Theije C; Corten M; Gielen E; van Loon L; Schols A; Langen R
    Skelet Muscle; 2018 Feb; 8(1):4. PubMed ID: 29444710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Muscle-specific GSK-3β ablation accelerates regeneration of disuse-atrophied skeletal muscle.
    Pansters NA; Schols AM; Verhees KJ; de Theije CC; Snepvangers FJ; Kelders MC; Ubags ND; Haegens A; Langen RC
    Biochim Biophys Acta; 2015 Mar; 1852(3):490-506. PubMed ID: 25496993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondria-cytokine crosstalk following skeletal muscle injury and disuse: a mini-review.
    Qualls AE; Southern WM; Call JA
    Am J Physiol Cell Physiol; 2021 May; 320(5):C681-C688. PubMed ID: 33566726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Skeletal Muscle Loss is Associated with TNF Mediated Insufficient Skeletal Myogenic Activation After Burn.
    Song J; Saeman MR; De Libero J; Wolf SE
    Shock; 2015 Nov; 44(5):479-86. PubMed ID: 26196842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inactivation of glycogen synthase kinase 3β (GSK-3β) enhances mitochondrial biogenesis during myogenesis.
    Theeuwes WF; Gosker HR; Langen RCJ; Pansters NAM; Schols AMWJ; Remels AHV
    Biochim Biophys Acta Mol Basis Dis; 2018 Sep; 1864(9 Pt B):2913-2926. PubMed ID: 29883716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial dysfunction and skeletal muscle atrophy: Causes, mechanisms, and treatment strategies.
    Kubat GB; Bouhamida E; Ulger O; Turkel I; Pedriali G; Ramaccini D; Ekinci O; Ozerklig B; Atalay O; Patergnani S; Nur Sahin B; Morciano G; Tuncer M; Tremoli E; Pinton P
    Mitochondrion; 2023 Sep; 72():33-58. PubMed ID: 37451353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellular and molecular mechanisms of apoptosis in age-related muscle atrophy.
    Dirks-Naylor AJ; Lennon-Edwards S
    Curr Aging Sci; 2011 Dec; 4(3):269-78. PubMed ID: 21529323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased sensitivity to mitochondrial permeability transition and myonuclear translocation of endonuclease G in atrophied muscle of physically active older humans.
    Gouspillou G; Sgarioto N; Kapchinsky S; Purves-Smith F; Norris B; Pion CH; Barbat-Artigas S; Lemieux F; Taivassalo T; Morais JA; Aubertin-Leheudre M; Hepple RT
    FASEB J; 2014 Apr; 28(4):1621-33. PubMed ID: 24371120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of ARC ablation on skeletal muscle morphology, function, and apoptotic signaling during aging.
    Vorobej K; Mitchell AS; Smith IC; Donath S; Russell Tupling A; Quadrilatero J
    Exp Gerontol; 2018 Jan; 101():69-79. PubMed ID: 29056555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of denervation on mitochondrially mediated apoptosis in skeletal muscle.
    Adhihetty PJ; O'Leary MF; Chabi B; Wicks KL; Hood DA
    J Appl Physiol (1985); 2007 Mar; 102(3):1143-51. PubMed ID: 17122379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pattern of myogenesis and vascular repair in early and advanced lesions of juvenile dermatomyositis.
    Baumann M; Gumpold C; Mueller-Felber W; Schoser B; Haberler C; Loescher WN; Rostásy K; Fischer MB; Wanschitz JV
    Neuromuscul Disord; 2018 Dec; 28(12):973-985. PubMed ID: 30389421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.