BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 35241367)

  • 21. Adaptations in skeletal muscle disuse or decreased-use atrophy.
    Edgerton VR; Roy RR; Allen DL; Monti RJ
    Am J Phys Med Rehabil; 2002 Nov; 81(11 Suppl):S127-47. PubMed ID: 12409818
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Expression of caspase family and muscle- and apoptosis-specific genes during skeletal myogenesis in mouse embryo.
    Ikeda T; Kanazawa T; Otsuka S; Ichii O; Hashimoto Y; Kon Y
    J Vet Med Sci; 2009 Sep; 71(9):1161-8. PubMed ID: 19801895
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lack of Smad3 signaling leads to impaired skeletal muscle regeneration.
    Ge X; Vajjala A; McFarlane C; Wahli W; Sharma M; Kambadur R
    Am J Physiol Endocrinol Metab; 2012 Jul; 303(1):E90-102. PubMed ID: 22535746
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interrelations of myogenic response, progressive atrophy of muscle fibers, and cell death in denervated skeletal muscle.
    Borisov AB; Dedkov EI; Carlson BM
    Anat Rec; 2001 Oct; 264(2):203-18. PubMed ID: 11590596
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mitochondrial co-chaperone protein Tid1 is required for energy homeostasis during skeletal myogenesis.
    Cheng LH; Hung KF; Lee TC; Huang CY; Chiu WT; Lo JF; Huang TF
    Stem Cell Res Ther; 2016 Dec; 7(1):185. PubMed ID: 27927223
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Coordinated regulation of skeletal muscle mass and metabolic plasticity during recovery from disuse.
    Kneppers A; Leermakers P; Pansters N; Backx E; Gosker H; van Loon L; Schols A; Langen R; Verdijk L
    FASEB J; 2019 Jan; 33(1):1288-1298. PubMed ID: 30133324
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mitochondria Initiate and Regulate Sarcopenia.
    Alway SE; Mohamed JS; Myers MJ
    Exerc Sport Sci Rev; 2017 Apr; 45(2):58-69. PubMed ID: 28098577
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mitochondrial health and muscle plasticity after spinal cord injury.
    Gorgey AS; Witt O; O'Brien L; Cardozo C; Chen Q; Lesnefsky EJ; Graham ZA
    Eur J Appl Physiol; 2019 Feb; 119(2):315-331. PubMed ID: 30539302
    [TBL] [Abstract][Full Text] [Related]  

  • 29. SMAC-expression in denervated human skeletal muscle as a potential inhibitor of coexpressed inhibitor-of-apoptosis proteins.
    Tews DS; Behrhof W; Schindler S
    Appl Immunohistochem Mol Morphol; 2008 Jan; 16(1):66-70. PubMed ID: 18091317
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Denervation-induced mitochondrial dysfunction and autophagy in skeletal muscle of apoptosis-deficient animals.
    O'Leary MF; Vainshtein A; Carter HN; Zhang Y; Hood DA
    Am J Physiol Cell Physiol; 2012 Aug; 303(4):C447-54. PubMed ID: 22673615
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Immobilization-induced activation of key proteolytic systems in skeletal muscles is prevented by a mitochondria-targeted antioxidant.
    Talbert EE; Smuder AJ; Min K; Kwon OS; Szeto HH; Powers SK
    J Appl Physiol (1985); 2013 Aug; 115(4):529-38. PubMed ID: 23766499
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interleukin-6 myokine signaling in skeletal muscle: a double-edged sword?
    Muñoz-Cánoves P; Scheele C; Pedersen BK; Serrano AL
    FEBS J; 2013 Sep; 280(17):4131-48. PubMed ID: 23663276
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lnc-ORA interacts with microRNA-532-3p and IGF2BP2 to inhibit skeletal muscle myogenesis.
    Cai R; Zhang Q; Wang Y; Yong W; Zhao R; Pang W
    J Biol Chem; 2021; 296():100376. PubMed ID: 33548229
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of satellite cells in muscle growth and maintenance of muscle mass.
    Pallafacchina G; Blaauw B; Schiaffino S
    Nutr Metab Cardiovasc Dis; 2013 Dec; 23 Suppl 1():S12-8. PubMed ID: 22621743
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stress-induced skeletal muscle Gadd45a expression reprograms myonuclei and causes muscle atrophy.
    Ebert SM; Dyle MC; Kunkel SD; Bullard SA; Bongers KS; Fox DK; Dierdorff JM; Foster ED; Adams CM
    J Biol Chem; 2012 Aug; 287(33):27290-301. PubMed ID: 22692209
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cyclophilin-D is dispensable for atrophy and mitochondrial apoptotic signalling in denervated muscle.
    Daussin FN; Godin R; Ascah A; Deschênes S; Burelle Y
    J Physiol; 2011 Feb; 589(Pt 4):855-61. PubMed ID: 21224232
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Asymmetric superoxide release inside and outside the mitochondria in skeletal muscle under conditions of aging and disuse.
    Xu X; Chen CN; Arriaga EA; Thompson LV
    J Appl Physiol (1985); 2010 Oct; 109(4):1133-9. PubMed ID: 20689097
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lack of muscle recovery after immobilization in old rats does not result from a defect in normalization of the ubiquitin-proteasome and the caspase-dependent apoptotic pathways.
    Magne H; Savary-Auzeloux I; Vazeille E; Claustre A; Attaix D; Anne L; Véronique SL; Philippe G; Dardevet D; Combaret L
    J Physiol; 2011 Feb; 589(Pt 3):511-24. PubMed ID: 21115641
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Myonuclear domains in muscle adaptation and disease.
    Allen DL; Roy RR; Edgerton VR
    Muscle Nerve; 1999 Oct; 22(10):1350-60. PubMed ID: 10487900
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mitochondrial Dysfunction in Skeletal Muscle Pathologies.
    Abrigo J; Simon F; Cabrera D; Vilos C; Cabello-Verrugio C
    Curr Protein Pept Sci; 2019; 20(6):536-546. PubMed ID: 30947668
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.