These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 35242266)

  • 1. Study of sacrificial ink-assisted embedded printing for 3D perfusable channel creation for biomedical applications.
    Ren B; Song K; Sanikommu AR; Chai Y; Longmire MA; Chai W; Murfee WL; Huang Y
    Appl Phys Rev; 2022 Mar; 9(1):011408. PubMed ID: 35242266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cross-Linkable Microgel Composite Matrix Bath for Embedded Bioprinting of Perfusable Tissue Constructs and Sculpting of Solid Objects.
    Compaan AM; Song K; Chai W; Huang Y
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):7855-7868. PubMed ID: 31948226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving the 3D Printability of Sugar Glass to Engineer Sacrificial Vascular Templates.
    Moeun BN; Fernandez SA; Collin S; Gauvin-Rossignol G; Lescot T; Fortin MA; Ruel J; Bégin-Drolet A; Leask RL; Hoesli CA
    3D Print Addit Manuf; 2023 Oct; 10(5):869-886. PubMed ID: 37886415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Composite Inks for Extrusion Printing of Biological and Biomedical Constructs.
    Ravanbakhsh H; Bao G; Luo Z; Mongeau LG; Zhang YS
    ACS Biomater Sci Eng; 2021 Sep; 7(9):4009-4026. PubMed ID: 34510905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D Printing of Microgel Scaffolds with Tunable Void Fraction to Promote Cell Infiltration.
    Seymour AJ; Shin S; Heilshorn SC
    Adv Healthc Mater; 2021 Sep; 10(18):e2100644. PubMed ID: 34342179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A rheological approach to assess the printability of thermosensitive chitosan-based biomaterial inks.
    Rahimnejad M; Labonté-Dupuis T; Demarquette NR; Lerouge S
    Biomed Mater; 2020 Nov; 16(1):015003. PubMed ID: 33245047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Printability study of hydrogel solution extrusion in nanoclay yield-stress bath during printing-then-gelation biofabrication.
    Jin Y; Chai W; Huang Y
    Mater Sci Eng C Mater Biol Appl; 2017 Nov; 80():313-325. PubMed ID: 28866170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Injectable Gelatin Microgel-Based Composite Ink for 3D Bioprinting in Air.
    Song K; Compaan AM; Chai W; Huang Y
    ACS Appl Mater Interfaces; 2020 May; 12(20):22453-22466. PubMed ID: 32337975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of novel 3D printable inks for protein delivery.
    Alzhrani RF; Xu H; Zhang Y; Maniruzzaman M; Cui Z
    Int J Pharm; 2024 Jun; 659():124277. PubMed ID: 38802027
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D bioprinting of complex channels within cell-laden hydrogels.
    Ji S; Almeida E; Guvendiren M
    Acta Biomater; 2019 Sep; 95():214-224. PubMed ID: 30831327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomimetic Inks Based on Cellulose Nanofibrils and Cross-Linkable Xylans for 3D Printing.
    Markstedt K; Escalante A; Toriz G; Gatenholm P
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40878-40886. PubMed ID: 29068193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability.
    Paxton N; Smolan W; Böck T; Melchels F; Groll J; Jungst T
    Biofabrication; 2017 Nov; 9(4):044107. PubMed ID: 28930091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyurethane-gelatin methacryloyl hybrid ink for 3D printing of biocompatible and tough vascular networks.
    Huang Y; Zhao H; Wang X; Liu X; Gao Z; Bai H; Lv F; Gu Q; Wang S
    Chem Commun (Camb); 2022 Jun; 58(49):6894-6897. PubMed ID: 35638877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of Biomaterial Ink Viscosity Properties and Optimization of the Printing Process Based on Pattern Path Planning.
    Wu J; Wu C; Zou S; Li X; Ho B; Sun R; Liu C; Chen M
    Bioengineering (Basel); 2023 Nov; 10(12):. PubMed ID: 38135949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gallol-derived ECM-mimetic adhesive bioinks exhibiting temporal shear-thinning and stabilization behavior.
    Shin M; Galarraga JH; Kwon MY; Lee H; Burdick JA
    Acta Biomater; 2019 Sep; 95():165-175. PubMed ID: 30366132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of maleic acid-propylene diepoxide hydrogel for 3D printing application for flexible tissue engineering scaffold with high resolution by end capping and graft polymerization.
    Tran HN; Kim IG; Kim JH; Chung EJ; Noh I
    Biomater Res; 2022 Dec; 26(1):75. PubMed ID: 36494708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Printability of Poly(lactic acid) Ink by Embedded 3D Printing
    Karyappa R; Liu H; Zhu Q; Hashimoto M
    ACS Appl Mater Interfaces; 2023 May; 15(17):21575-21584. PubMed ID: 37078653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of thick paste-like inks based on superconcentrated gelatin/alginate for 3D printing of scaffolds with shape fidelity and stability.
    Curti F; Drăgușin DM; Serafim A; Iovu H; Stancu IC
    Mater Sci Eng C Mater Biol Appl; 2021 Mar; 122():111866. PubMed ID: 33641888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-Dimensional Printing of a Tyramine Hyaluronan Derivative with Double Gelation Mechanism for Independent Tuning of Shear Thinning and Postprinting Curing.
    Petta D; Grijpma DW; Alini M; Eglin D; D'Este M
    ACS Biomater Sci Eng; 2018 Aug; 4(8):3088-3098. PubMed ID: 33435028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational Modeling and Experimental Characterization of Extrusion Printing into Suspension Baths.
    Prendergast ME; Burdick JA
    Adv Healthc Mater; 2022 Apr; 11(7):e2101679. PubMed ID: 34699689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.