These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 35242448)

  • 1. Deep Learning Accurately Quantifies Plasma Cell Percentages on CD138-Stained Bone Marrow Samples.
    Fu F; Guenther A; Sakhdari A; McKee TD; Xia D
    J Pathol Inform; 2022; 13():100011. PubMed ID: 35242448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Training high-performance deep learning classifier for diagnosis in oral cytology using diverse annotations.
    Sukegawa S; Tanaka F; Nakano K; Hara T; Ochiai T; Shimada K; Inoue Y; Taki Y; Nakai F; Nakai Y; Ishihama T; Miyazaki R; Murakami S; Nagatsuka H; Miyake M
    Sci Rep; 2024 Jul; 14(1):17591. PubMed ID: 39080384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of bone marrow plasma cell infiltrates in multiple myeloma: the added value of CD138 immunohistochemistry.
    Al-Quran SZ; Yang L; Magill JM; Braylan RC; Douglas-Nikitin VK
    Hum Pathol; 2007 Dec; 38(12):1779-87. PubMed ID: 17714757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep learning-based image analysis methods for brightfield-acquired multiplex immunohistochemistry images.
    Fassler DJ; Abousamra S; Gupta R; Chen C; Zhao M; Paredes D; Batool SA; Knudsen BS; Escobar-Hoyos L; Shroyer KR; Samaras D; Kurc T; Saltz J
    Diagn Pathol; 2020 Jul; 15(1):100. PubMed ID: 32723384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of an open-source machine-learning tool to quantify bone marrow plasma cells.
    Baranova K; Tran C; Plantinga P; Sangle N
    J Clin Pathol; 2021 Jul; 74(7):462-468. PubMed ID: 33952591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated diagnosis of 7 canine skin tumors using machine learning on H&E-stained whole slide images.
    Fragoso-Garcia M; Wilm F; Bertram CA; Merz S; Schmidt A; Donovan T; Fuchs-Baumgartinger A; Bartel A; Marzahl C; Diehl L; Puget C; Maier A; Aubreville M; Breininger K; Klopfleisch R
    Vet Pathol; 2023 Nov; 60(6):865-875. PubMed ID: 37515411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recognizing basal cell carcinoma on smartphone-captured digital histopathology images with a deep neural network.
    Jiang YQ; Xiong JH; Li HY; Yang XH; Yu WT; Gao M; Zhao X; Ma YP; Zhang W; Guan YF; Gu H; Sun JF
    Br J Dermatol; 2020 Mar; 182(3):754-762. PubMed ID: 31017653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AI-algorithm training and validation for identification of endometrial CD138+ cells in infertility-associated conditions; polycystic ovary syndrome (PCOS) and recurrent implantation failure (RIF).
    Lee S; Arffman RK; Komsi EK; Lindgren O; Kemppainen JA; Metsola H; Rossi HR; Ahtikoski A; Kask K; Saare M; Salumets A; Piltonen TT
    J Pathol Inform; 2024 Dec; 15():100380. PubMed ID: 38827567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pathologist-level classification of histopathological melanoma images with deep neural networks.
    Hekler A; Utikal JS; Enk AH; Berking C; Klode J; Schadendorf D; Jansen P; Franklin C; Holland-Letz T; Krahl D; von Kalle C; Fröhling S; Brinker TJ
    Eur J Cancer; 2019 Jul; 115():79-83. PubMed ID: 31129383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and validation of artificial intelligence-based prescreening of large-bowel biopsies taken in the UK and Portugal: a retrospective cohort study.
    Bilal M; Tsang YW; Ali M; Graham S; Hero E; Wahab N; Dodd K; Sahota H; Wu S; Lu W; Jahanifar M; Robinson A; Azam A; Benes K; Nimir M; Hewitt K; Bhalerao A; Eldaly H; Raza SEA; Gopalakrishnan K; Minhas F; Snead D; Rajpoot N
    Lancet Digit Health; 2023 Nov; 5(11):e786-e797. PubMed ID: 37890902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer.
    Ehteshami Bejnordi B; Veta M; Johannes van Diest P; van Ginneken B; Karssemeijer N; Litjens G; van der Laak JAWM; ; Hermsen M; Manson QF; Balkenhol M; Geessink O; Stathonikos N; van Dijk MC; Bult P; Beca F; Beck AH; Wang D; Khosla A; Gargeya R; Irshad H; Zhong A; Dou Q; Li Q; Chen H; Lin HJ; Heng PA; Haß C; Bruni E; Wong Q; Halici U; Öner MÜ; Cetin-Atalay R; Berseth M; Khvatkov V; Vylegzhanin A; Kraus O; Shaban M; Rajpoot N; Awan R; Sirinukunwattana K; Qaiser T; Tsang YW; Tellez D; Annuscheit J; Hufnagl P; Valkonen M; Kartasalo K; Latonen L; Ruusuvuori P; Liimatainen K; Albarqouni S; Mungal B; George A; Demirci S; Navab N; Watanabe S; Seno S; Takenaka Y; Matsuda H; Ahmady Phoulady H; Kovalev V; Kalinovsky A; Liauchuk V; Bueno G; Fernandez-Carrobles MM; Serrano I; Deniz O; Racoceanu D; Venâncio R
    JAMA; 2017 Dec; 318(22):2199-2210. PubMed ID: 29234806
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A counting strategy for estimating plasma cell number in CD138-stained bone marrow core biopsy sections.
    Smith FB; Elnawawi A
    Ann Clin Lab Sci; 2008; 38(2):138-42. PubMed ID: 18469359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of Deep Learning to Develop and Analyze Computational Hematoxylin and Eosin Staining of Prostate Core Biopsy Images for Tumor Diagnosis.
    Rana A; Lowe A; Lithgow M; Horback K; Janovitz T; Da Silva A; Tsai H; Shanmugam V; Bayat A; Shah P
    JAMA Netw Open; 2020 May; 3(5):e205111. PubMed ID: 32432709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combining weakly and strongly supervised learning improves strong supervision in Gleason pattern classification.
    Otálora S; Marini N; Müller H; Atzori M
    BMC Med Imaging; 2021 May; 21(1):77. PubMed ID: 33964886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep Learning Global Glomerulosclerosis in Transplant Kidney Frozen Sections.
    Marsh JN; Matlock MK; Kudose S; Liu TC; Stappenbeck TS; Gaut JP; Swamidass SJ
    IEEE Trans Med Imaging; 2018 Dec; 37(12):2718-2728. PubMed ID: 29994669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effectiveness of transfer learning for enhancing tumor classification with a convolutional neural network on frozen sections.
    Kim YG; Kim S; Cho CE; Song IH; Lee HJ; Ahn S; Park SY; Gong G; Kim N
    Sci Rep; 2020 Dec; 10(1):21899. PubMed ID: 33318495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated Computational Detection of Interstitial Fibrosis, Tubular Atrophy, and Glomerulosclerosis.
    Ginley B; Jen KY; Han SS; Rodrigues L; Jain S; Fogo AB; Zuckerman J; Walavalkar V; Miecznikowski JC; Wen Y; Yen F; Yun D; Moon KC; Rosenberg A; Parikh C; Sarder P
    J Am Soc Nephrol; 2021 Apr; 32(4):837-850. PubMed ID: 33622976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using deep learning for quantification of cellularity and cell lineages in bone marrow biopsies and comparison to normal age-related variation.
    van Eekelen L; Pinckaers H; van den Brand M; Hebeda KM; Litjens G
    Pathology; 2022 Apr; 54(3):318-327. PubMed ID: 34772487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Code-Free Development and Deployment of Deep Segmentation Models for Digital Pathology.
    Pettersen HS; Belevich I; Røyset ES; Smistad E; Simpson MR; Jokitalo E; Reinertsen I; Bakke I; Pedersen A
    Front Med (Lausanne); 2021; 8():816281. PubMed ID: 35155486
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated digital enumeration of plasma cells in bone marrow trephine biopsies of multiple myeloma.
    Malherbe JAJ; Fuller KA; Mirzai B; Augustson BM; Erber WN
    J Clin Pathol; 2022 Jan; 75(1):50-57. PubMed ID: 33234694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.