These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 35242695)

  • 1. Accelerators, Gantries, Magnets and Imaging Systems for Particle Beam Therapy: Recent Status and Prospects for Improvement.
    Collings EW; Lu L; Gupta N; Sumption MD
    Front Oncol; 2021; 11():737837. PubMed ID: 35242695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Particle tracking and beam optics analysis on a toroidal gantry for proton therapy.
    Felcini E; Bottura L; Gerbershagen A; van Nugteren J; Dutoit B
    Phys Med Biol; 2021 May; 66(10):. PubMed ID: 33849002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel beam optics concept in a particle therapy gantry utilizing the advantages of superconducting magnets.
    Gerbershagen A; Meer D; Schippers JM; Seidel M
    Z Med Phys; 2016 Sep; 26(3):224-37. PubMed ID: 27084590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radiotherapy systems using proton and carbon beams.
    Jongen Y
    Bull Mem Acad R Med Belg; 2008; 163(10-12):471-8; discussion 479-80. PubMed ID: 20120253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radiobiology with heavy charged particles: a historical review.
    Skarsgard LD
    Phys Med; 1998 Jul; 14 Suppl 1():1-19. PubMed ID: 11542635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new emittance selection system to maximize beam transmission for low-energy beams in cyclotron-based proton therapy facilities with gantry.
    Maradia V; Meer D; Weber DC; Lomax AJ; Schippers JM; Psoroulas S
    Med Phys; 2021 Dec; 48(12):7613-7622. PubMed ID: 34655083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A light-weight compact proton gantry design with a novel dose delivery system for broad-energetic laser-accelerated beams.
    Masood U; Cowan TE; Enghardt W; Hofmann KM; Karsch L; Kroll F; Schramm U; Wilkens JJ; Pawelke J
    Phys Med Biol; 2017 Jul; 62(13):5531-5555. PubMed ID: 28609301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large energy acceptance gantry for proton therapy utilizing superconducting technology.
    Nesteruk KP; Calzolaio C; Meer D; Rizzoglio V; Seidel M; Schippers JM
    Phys Med Biol; 2019 Aug; 64(17):175007. PubMed ID: 31272087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Commissioning a beam line for MR-guided particle therapy assisted by in silico methods.
    Fuchs H; Padilla-Cabal F; Oborn BM; Georg D
    Med Phys; 2023 Feb; 50(2):1019-1028. PubMed ID: 36504399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and optimization of beam optics for a superconducting gantry applied to proton therapy.
    Zhao R; Qin B; Liu X; Chen H; Chen Q
    Phys Med; 2020 May; 73():158-163. PubMed ID: 32361573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Future of medical physics: Real-time MRI-guided proton therapy.
    Oborn BM; Dowdell S; Metcalfe PE; Crozier S; Mohan R; Keall PJ
    Med Phys; 2017 Aug; 44(8):e77-e90. PubMed ID: 28547820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computer-assisted beam modeling for particle therapy.
    Fuchs H; Elia A; Resch AF; Kuess P; Lühr A; Vidal M; Grevillot L; Georg D
    Med Phys; 2021 Feb; 48(2):841-851. PubMed ID: 33283910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Geant4 shielding design for the first US carbon multi-ion hybrid synchrotron facility.
    Dougherty JM; Bolst D; Furutani KM; Guatelli S; Liang X; Rosenfeld A; Beltran CJ
    Phys Med Biol; 2023 Feb; 68(5):. PubMed ID: 36731141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accelerators for heavy-charged-particle radiation therapy.
    Coutrakon GB
    Technol Cancer Res Treat; 2007 Aug; 6(4 Suppl):49-54. PubMed ID: 17668952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increase of the transmission and emittance acceptance through a cyclotron-based proton therapy gantry.
    Maradia V; Giovannelli AC; Meer D; Weber DC; Lomax AJ; Schippers JM; Psoroulas S
    Med Phys; 2022 Apr; 49(4):2183-2192. PubMed ID: 35099067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A predictive algorithm for spot position corrections after fast energy switching in proton pencil beam scanning.
    Psoroulas S; Bula C; Actis O; Weber DC; Meer D
    Med Phys; 2018 Nov; 45(11):4806-4815. PubMed ID: 30273965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fan-beam intensity modulated proton therapy.
    Hill P; Westerly D; Mackie T
    Med Phys; 2013 Nov; 40(11):111704. PubMed ID: 24320412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of different fiducial markers for image-guided radiotherapy and particle therapy.
    Habermehl D; Henkner K; Ecker S; Jäkel O; Debus J; Combs SE
    J Radiat Res; 2013 Jul; 54 Suppl 1(Suppl 1):i61-8. PubMed ID: 23824129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic field effects on particle beams and their implications for dose calculation in MR-guided particle therapy.
    Fuchs H; Moser P; Gröschl M; Georg D
    Med Phys; 2017 Mar; 44(3):1149-1156. PubMed ID: 28090633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Should positive phase III clinical trial data be required before proton beam therapy is more widely adopted? No.
    Suit H; Kooy H; Trofimov A; Farr J; Munzenrider J; DeLaney T; Loeffler J; Clasie B; Safai S; Paganetti H
    Radiother Oncol; 2008 Feb; 86(2):148-53. PubMed ID: 18237800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.