These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 35243056)

  • 1. The effects of multiple drilling of a bone with the same drill bit: thermal and force analysis.
    Tsiagadigui JG; Ndiwe B; Ngo Yamben MA; Fotio N; Belinga FE; Njeugna E
    Heliyon; 2022 Feb; 8(2):e08927. PubMed ID: 35243056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanical Evaluation of Temperature Rising and Applied Force in Controlled Cortical Bone Drilling: an Animal in Vitro Study.
    Ein-Afshar MJ; Shahrezaee M; Shahrezaee MH; Sharifzadeh SR
    Arch Bone Jt Surg; 2020 Sep; 8(5):605-612. PubMed ID: 33088862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heat Generation During Bone Drilling: A Comparison Between Industrial and Orthopaedic Drill Bits.
    Hein C; Inceoglu S; Juma D; Zuckerman L
    J Orthop Trauma; 2017 Feb; 31(2):e55-e59. PubMed ID: 27682019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal changes and drill wear in bovine bone during implant site preparation. A comparative in vitro study: twisted stainless steel and ceramic drills.
    Oliveira N; Alaejos-Algarra F; Mareque-Bueno J; Ferrés-Padró E; Hernández-Alfaro F
    Clin Oral Implants Res; 2012 Aug; 23(8):963-9. PubMed ID: 21806686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of experimental thermal, numerical, and mandibular drilling factors in implantology.
    Pirjamalineisiani A; Jamshidi N; Sarafbidabad M; Soltani N
    Br J Oral Maxillofac Surg; 2016 May; 54(4):400-4. PubMed ID: 26493617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of drill quality on biological damage in bone drilling.
    Alam K; Qamar SZ; Iqbal M; Piya S; Al-Kindi M; Qureshi A; Al-Ghaithi A; Al-Sumri B; Silberschmidt VV
    Sci Rep; 2023 Apr; 13(1):6234. PubMed ID: 37069203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of thermal necrosis risk regions for different bone qualities as a function of drilling parameters.
    Chen YC; Tu YK; Tsai YJ; Tsai YS; Yen CY; Yang SC; Hsiao CK
    Comput Methods Programs Biomed; 2018 Aug; 162():253-261. PubMed ID: 29903492
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermo-Mechanical and Delamination Properties in Drilling GFRP Composites by Various Drill Angles.
    Khashaba UA; Abd-Elwahed MS; Eltaher MA; Najjar I; Melaibari A; Ahmed KI
    Polymers (Basel); 2021 Jun; 13(11):. PubMed ID: 34204048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An analytical and numerical approach to the determination of thermal necrosis in cortical bone drilling.
    Aydın K; Ökten K; Uğur L
    Int J Numer Method Biomed Eng; 2022 Oct; 38(10):e3640. PubMed ID: 35899364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reducing temperature elevation of robotic bone drilling.
    Feldmann A; Wandel J; Zysset P
    Med Eng Phys; 2016 Dec; 38(12):1495-1504. PubMed ID: 27789226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In-situ tool wear monitoring and its effects on the performance of porcine cortical bone drilling: a comparative in-vitro investigation.
    Gupta V; Pandey PM
    Mech Adv Mater Mod Process; 2017; 3(1):2. PubMed ID: 32355608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature changes during cortical bone drilling with a newly designed step drill and an internally cooled drill.
    Augustin G; Davila S; Udilljak T; Staroveski T; Brezak D; Babic S
    Int Orthop; 2012 Jul; 36(7):1449-56. PubMed ID: 22290154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance test of different 3.5 mm drill bits and consequences for orthopaedic surgery.
    Clement H; Zopf C; Brandner M; Tesch NP; Vallant R; Puchwein P
    Arch Orthop Trauma Surg; 2015 Dec; 135(12):1675-82. PubMed ID: 26407980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An experimental comparative study of drilling efficiency and temperature elevation with unmodified and modified medical drills in pig tibia bone.
    Enokida M; Kanaya H; Uehara K; Ueki M; Nagashima H
    Heliyon; 2019 Aug; 5(8):e02189. PubMed ID: 31417971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental investigation on the effect of drill quality on the performance of bone drilling.
    Alam K; Piya S; Al-Ghaithi A; Silberschmidth V
    Biomed Tech (Berl); 2020 Jan; 65(1):113-120. PubMed ID: 31437122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling and experimentation of bone drilling forces.
    Lee J; Gozen BA; Ozdoganlar OB
    J Biomech; 2012 Apr; 45(6):1076-83. PubMed ID: 22281407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental and analytical investigation of the thermal necrosis in high-speed drilling of bone.
    Shakouri E; Sadeghi MH; Maerefat M; Shajari S
    Proc Inst Mech Eng H; 2014 Apr; 228(4):330-41. PubMed ID: 24569922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feed rate control in robotic bone drilling process.
    Boiadjiev T; Boiadjiev G; Delchev K; Chavdarov I; Kastelov R
    Proc Inst Mech Eng H; 2021 Mar; 235(3):273-280. PubMed ID: 33231113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of process parameters on the temperature changes during robotic bone drilling.
    Han Y; Cai C; Lv Q; Song Y; Zhang Q
    Proc Inst Mech Eng H; 2022 Aug; 236(8):1129-1138. PubMed ID: 35821641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new thermal model for bone drilling with applications to orthopaedic surgery.
    Lee J; Rabin Y; Ozdoganlar OB
    Med Eng Phys; 2011 Dec; 33(10):1234-44. PubMed ID: 21803638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.