BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 35243375)

  • 1. Protocol for condition-dependent metabolite yield prediction using the TRIMER pipeline.
    Niu P; Soto MJ; Yoon BJ; Dougherty ER; Alexander FJ; Blaby I; Qian X
    STAR Protoc; 2022 Mar; 3(1):101184. PubMed ID: 35243375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensitivity Analysis of Genome-Scale Metabolic Flux Prediction.
    Niu P; Soto MJ; Huang S; Yoon BJ; Dougherty ER; Alexander FJ; Blaby I; Qian X
    J Comput Biol; 2023 Jul; 30(7):751-765. PubMed ID: 36961389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TRIMER: Transcription Regulation Integrated with Metabolic Regulation.
    Niu P; Soto MJ; Yoon BJ; Dougherty ER; Alexander FJ; Blaby I; Qian X
    iScience; 2021 Nov; 24(11):103218. PubMed ID: 34761179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrating transcriptional and protein interaction networks to prioritize condition-specific master regulators.
    Padi M; Quackenbush J
    BMC Syst Biol; 2015 Nov; 9():80. PubMed ID: 26576632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative analysis of the transcription-factor gene regulatory networks of E. coli and S. cerevisiae.
    Guzmán-Vargas L; Santillán M
    BMC Syst Biol; 2008 Jan; 2():13. PubMed ID: 18237429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Local flux coordination and global gene expression regulation in metabolic modeling.
    Li G; Liu L; Du W; Cao H
    Nat Commun; 2023 Sep; 14(1):5700. PubMed ID: 37709734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Linking high-resolution metabolic flux phenotypes and transcriptional regulation in yeast modulated by the global regulator Gcn4p.
    Moxley JF; Jewett MC; Antoniewicz MR; Villas-Boas SG; Alper H; Wheeler RT; Tong L; Hinnebusch AG; Ideker T; Nielsen J; Stephanopoulos G
    Proc Natl Acad Sci U S A; 2009 Apr; 106(16):6477-82. PubMed ID: 19346491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved recovery of cell-cycle gene expression in Saccharomyces cerevisiae from regulatory interactions in multiple omics data.
    Panchy NL; Lloyd JP; Shiu SH
    BMC Genomics; 2020 Feb; 21(1):159. PubMed ID: 32054475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probabilistic integrative modeling of genome-scale metabolic and regulatory networks in Escherichia coli and Mycobacterium tuberculosis.
    Chandrasekaran S; Price ND
    Proc Natl Acad Sci U S A; 2010 Oct; 107(41):17845-50. PubMed ID: 20876091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Joint Bayesian inference of condition-specific miRNA and transcription factor activities from combined gene and microRNA expression data.
    Zacher B; Abnaof K; Gade S; Younesi E; Tresch A; Fröhlich H
    Bioinformatics; 2012 Jul; 28(13):1714-20. PubMed ID: 22563068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Classifying transcription factor targets and discovering relevant biological features.
    Holloway DT; Kon M; DeLisi C
    Biol Direct; 2008 May; 3():22. PubMed ID: 18513408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inferring condition-specific modulation of transcription factor activity in yeast through regulon-based analysis of genomewide expression.
    Boorsma A; Lu XJ; Zakrzewska A; Klis FM; Bussemaker HJ
    PLoS One; 2008 Sep; 3(9):e3112. PubMed ID: 18769540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protocol for CAROM: A machine learning tool to predict post-translational regulation from metabolic signatures.
    Smith K; Rhoads N; Chandrasekaran S
    STAR Protoc; 2022 Dec; 3(4):101799. PubMed ID: 36340881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying transcription factor targets using enhanced Bayesian classifier.
    He D; Zhou D; Zhou Y
    Comput Biol Chem; 2007 Oct; 31(5-6):355-60. PubMed ID: 17890157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks.
    Zhu J; Zhang B; Smith EN; Drees B; Brem RB; Kruglyak L; Bumgarner RE; Schadt EE
    Nat Genet; 2008 Jul; 40(7):854-61. PubMed ID: 18552845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controllability analysis of transcriptional regulatory networks reveals circular control patterns among transcription factors.
    Österlund T; Bordel S; Nielsen J
    Integr Biol (Camb); 2015 May; 7(5):560-8. PubMed ID: 25855217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexible modeling of regulatory networks improves transcription factor activity estimation.
    Chen C; Padi M
    NPJ Syst Biol Appl; 2024 May; 10(1):58. PubMed ID: 38806476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global transcriptional regulatory network for
    Fang X; Sastry A; Mih N; Kim D; Tan J; Yurkovich JT; Lloyd CJ; Gao Y; Yang L; Palsson BO
    Proc Natl Acad Sci U S A; 2017 Sep; 114(38):10286-10291. PubMed ID: 28874552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting eukaryotic transcriptional cooperativity by Bayesian network integration of genome-wide data.
    Wang Y; Zhang XS; Xia Y
    Nucleic Acids Res; 2009 Oct; 37(18):5943-58. PubMed ID: 19661283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interpreting patterns of gene expression: signatures of coregulation, the data processing inequality, and triplet motifs.
    Ku WL; Duggal G; Li Y; Girvan M; Ott E
    PLoS One; 2012; 7(2):e31969. PubMed ID: 22393375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.