These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 35243447)

  • 21. Characterization of the two nonidentical ArgR regulators of Tetragenococcus halophilus and their regulatory effects on arginine metabolism.
    Lin J; Luo X; Gänzle MG; Luo L
    Appl Microbiol Biotechnol; 2020 Oct; 104(20):8775-8787. PubMed ID: 32880693
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Safety assessment of Tetragenococcus halophilus isolates from doenjang, a Korean high-salt-fermented soybean paste.
    Jeong DW; Heo S; Lee JH
    Food Microbiol; 2017 Apr; 62():92-98. PubMed ID: 27889172
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genetic and physiological diversity of Tetragenococcus halophilus strains isolated from sugar- and salt-rich environments.
    Justé A; Lievens B; Frans I; Marsh TL; Klingeberg M; Michiels CW; Willems KA
    Microbiology (Reading); 2008 Sep; 154(Pt 9):2600-2610. PubMed ID: 18757794
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transcriptomic profiling reveals differences in the adaptation of two Tetragenococcus halophilus strains to a lupine moromi model medium.
    Link T; Ehrmann MA
    BMC Microbiol; 2023 Jan; 23(1):14. PubMed ID: 36639757
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The diversity among the species Tetragenococcus halophilus including new isolates from a lupine seed fermentation.
    Link T; Vogel RF; Ehrmann MA
    BMC Microbiol; 2021 Nov; 21(1):320. PubMed ID: 34798831
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ribitol-Containing Wall Teichoic Acid of Tetragenococcus halophilus Is Targeted by Bacteriophage phiWJ7 as a Binding Receptor.
    Wakinaka T; Matsutani M; Watanabe J; Mogi Y; Tokuoka M; Ohnishi A
    Microbiol Spectr; 2022 Apr; 10(2):e0033622. PubMed ID: 35311554
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of a GntR family regulator BusR
    Lin J; Zhu Y; Tang H; Yan J; Luo L
    Extremophiles; 2019 Jul; 23(4):451-460. PubMed ID: 31053934
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Isolation and characterization of halophilic lactic acid bacteria acting as a starter culture for sauce fermentation of the red alga Nori (Porphyra yezoensis).
    Uchida M; Miyoshi T; Yoshida G; Niwa K; Mori M; Wakabayashi H
    J Appl Microbiol; 2014 Jun; 116(6):1506-20. PubMed ID: 24494732
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Draft Genome Sequence of
    Kim E; Kim JH; Yang SM; Suh SM; Kim HJ; Kim CG; Choo DW; Kim HY
    Genome Announc; 2017 May; 5(18):. PubMed ID: 28473395
    [No Abstract]   [Full Text] [Related]  

  • 30. Tetragenococcus halophilus MJ4 as a starter culture for repressing biogenic amine (cadaverine) formation during saeu-jeot (salted shrimp) fermentation.
    Kim KH; Lee SH; Chun BH; Jeong SE; Jeon CO
    Food Microbiol; 2019 Sep; 82():465-473. PubMed ID: 31027807
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genomic Insight into the Salt Tolerance of
    Heo S; Lee J; Lee JH; Jeong DW
    J Microbiol Biotechnol; 2019 Oct; 29(10):1591-1602. PubMed ID: 31546297
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of culture conditions on lactic acid production of Tetragenococcus species.
    Kobayashi T; Kajiwara M; Wahyuni M; Hamada-Sato N; Imada C; Watanabe E
    J Appl Microbiol; 2004; 96(6):1215-21. PubMed ID: 15139912
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Use of Tetragenococcus halophilus as a starter culture for flavor improvement in fish sauce fermentation.
    Udomsil N; Rodtong S; Choi YJ; Hua Y; Yongsawatdigul J
    J Agric Food Chem; 2011 Aug; 59(15):8401-8. PubMed ID: 21710980
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Predominance of Tetragenococcus halophilus as the cause of sugar thick juice degradation.
    Justé A; Lievens B; Klingeberg M; Michiels CW; Marsh TL; Willems KA
    Food Microbiol; 2008 Apr; 25(2):413-21. PubMed ID: 18206785
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of Tetragenococcus halophilus and Candida versatilis on the production of aroma-active and umami-taste compounds during soy sauce fermentation.
    Zhang L; Zhang L; Xu Y
    J Sci Food Agric; 2020 Apr; 100(6):2782-2790. PubMed ID: 32020610
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure characterization, antioxidant and emulsifying capacities of exopolysaccharide derived from Tetragenococcus halophilus SNTH-8.
    Yang X; Wu J; An F; Xu J; Bat-Ochir M; Wei L; Li M; Bilige M; Wu R
    Int J Biol Macromol; 2022 May; 208():288-298. PubMed ID: 35248612
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Survival strategy of the salt-tolerant lactic acid bacterium, Tetragenococcus halophilus, to counteract koji mold, Aspergillus oryzae, in soy sauce brewing.
    Nishimura I; Shinohara Y; Oguma T; Koyama Y
    Biosci Biotechnol Biochem; 2018 Aug; 82(8):1437-1443. PubMed ID: 29629630
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Segregation of Tetragenococcus halophilus and Zygosaccharomyces rouxii using W
    Devanthi PVP; El Kadri H; Bowden A; Spyropoulos F; Gkatzionis K
    Food Res Int; 2018 Mar; 105():333-343. PubMed ID: 29433222
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural and functional conversion of molecular chaperone ClpB from the gram-positive halophilic lactic acid bacterium Tetragenococcus halophilus mediated by ATP and stress.
    Sugimoto S; Yoshida H; Mizunoe Y; Tsuruno K; Nakayama J; Sonomoto K
    J Bacteriol; 2006 Dec; 188(23):8070-8. PubMed ID: 16997952
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of an Aminopeptidase A from
    Kim TJ; Kim MJ; Kang YJ; Yoo JY; Kim JH
    J Microbiol Biotechnol; 2023 Mar; 33(3):371-377. PubMed ID: 36597589
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.