BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 35243559)

  • 1. Quantitative remote sensing of forest ecosystem services in sub-Saharan Africa's urban landscapes: a review.
    Mngadi M; Odindi J; Mutanga O; Sibanda M
    Environ Monit Assess; 2022 Mar; 194(4):242. PubMed ID: 35243559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deforestation and child diet diversity: A geospatial analysis of 15 Sub-Saharan African countries.
    Galway LP; Acharya Y; Jones AD
    Health Place; 2018 May; 51():78-88. PubMed ID: 29550735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Forest Carbon Monitoring and Reporting for REDD+: What Future for Africa?
    Gizachew B; Duguma LA
    Environ Manage; 2016 Nov; 58(5):922-930. PubMed ID: 27605226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detecting ecological spatial-temporal changes by Remote Sensing Ecological Index with local adaptability.
    Zhu D; Chen T; Wang Z; Niu R
    J Environ Manage; 2021 Dec; 299():113655. PubMed ID: 34488109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial Heterogeneity analysis of urban forest ecosystem services in Zhengzhou City.
    Yang Y; Ma J; Liu H; Song L; Cao W; Ren Y
    PLoS One; 2023; 18(6):e0286800. PubMed ID: 37289676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Challenges for monitoring artificial turf expansion with satellite remote sensing.
    Crowson M; Williams J; Sharma J; Pettorelli N
    Environ Monit Assess; 2024 May; 196(6):580. PubMed ID: 38805109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing environmental impacts and change in Myanmar's mangrove ecosystem service value due to deforestation (2000-2014).
    Estoque RC; Myint SW; Wang C; Ishtiaque A; Aung TT; Emerton L; Ooba M; Hijioka Y; Mon MS; Wang Z; Fan C
    Glob Chang Biol; 2018 Nov; 24(11):5391-5410. PubMed ID: 30053344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantifying and mapping ecosystem services supplies and demands: a review of remote sensing applications.
    Ayanu YZ; Conrad C; Nauss T; Wegmann M; Koellner T
    Environ Sci Technol; 2012 Aug; 46(16):8529-41. PubMed ID: 22816512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States.
    Paciorek CJ; Liu Y;
    Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimating changes and trends in ecosystem extent with dense time-series satellite remote sensing.
    Lee CKF; Nicholson E; Duncan C; Murray NJ
    Conserv Biol; 2021 Feb; 35(1):325-335. PubMed ID: 32323369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Challenges for tree officers to enhance the provision of regulating ecosystem services from urban forests.
    Davies HJ; Doick KJ; Hudson MD; Schreckenberg K
    Environ Res; 2017 Jul; 156():97-107. PubMed ID: 28342350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Landscape Evolution and It's Impact of Ecosystem Service Value of the Wuhan City, China.
    Chen R; Huang C
    Int J Environ Res Public Health; 2021 Dec; 18(24):. PubMed ID: 34948624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of forest cover and carbon stock changes in sub-tropical pine forest of Azad Jammu & Kashmir (AJK), Pakistan using multi-temporal Landsat satellite data and field inventory.
    Khan IA; Khan MR; Baig MHA; Hussain Z; Hameed N; Khan JA
    PLoS One; 2020; 15(1):e0226341. PubMed ID: 31971948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping multi-scale vascular plant richness in a forest landscape with integrated LiDAR and hyperspectral remote-sensing.
    Hakkenberg CR; Zhu K; Peet RK; Song C
    Ecology; 2018 Feb; 99(2):474-487. PubMed ID: 29231965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A hyper-temporal remote sensing protocol for high-resolution mapping of ecological sites.
    Maynard JJ; Karl JW
    PLoS One; 2017; 12(4):e0175201. PubMed ID: 28414731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing the potential of remote sensing-based models to predict old-growth forests on large spatiotemporal scales.
    Lalechère E; Monnet JM; Breen J; Fuhr M
    J Environ Manage; 2024 Feb; 351():119865. PubMed ID: 38159307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uncertainties in mapping forest carbon in urban ecosystems.
    Chen G; Ozelkan E; Singh KK; Zhou J; Brown MR; Meentemeyer RK
    J Environ Manage; 2017 Feb; 187():229-238. PubMed ID: 27912134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High Resolution Mapping of Soil Properties Using Remote Sensing Variables in South-Western Burkina Faso: A Comparison of Machine Learning and Multiple Linear Regression Models.
    Forkuor G; Hounkpatin OK; Welp G; Thiel M
    PLoS One; 2017; 12(1):e0170478. PubMed ID: 28114334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Designing a carbon market that protects forests in developing countries.
    Niesten E; Frumhoff PC; Manion M; Hardner JJ
    Philos Trans A Math Phys Eng Sci; 2002 Aug; 360(1797):1875-88. PubMed ID: 12460503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring the Spatial Pattern of Urban Forest Ecosystem Services based on i-Tree Eco and Spatial Interpolation: A Case Study of Kyoto City, Japan.
    Xie Y; Hirabayashi S; Hashimoto S; Shibata S; Kang J
    Environ Manage; 2023 Nov; 72(5):991-1005. PubMed ID: 37382645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.