BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 35244103)

  • 1. Mutual interactions between α-amylase and amyloglucosidase in the digestion of starch with distinct chain-length distributions at a fully gelatinized state.
    Zhou X; Wang C; Yue S; Zheng Y; Li C; Yu W
    Food Funct; 2022 Mar; 13(6):3453-3464. PubMed ID: 35244103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism and enzymatic contribution to in vitro test method of digestion for maize starches differing in amylose content.
    Brewer LR; Cai L; Shi YC
    J Agric Food Chem; 2012 May; 60(17):4379-87. PubMed ID: 22480190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro digestion rate of fully gelatinized rice starches is driven by molecular size and amylopectin medium-long chains.
    Li C; Gong B; Huang T; Yu WW
    Carbohydr Polym; 2021 Feb; 254():117275. PubMed ID: 33357853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical components and chain-length distributions affecting quinoa starch digestibility and gel viscoelasticity after germination treatment.
    Ma Z; Guan X; Gong B; Li C
    Food Funct; 2021 May; 12(9):4060-4071. PubMed ID: 33977982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular rearrangement of starch during in vitro digestion: toward a better understanding of enzyme resistant starch formation in processed starches.
    Lopez-Rubio A; Flanagan BM; Shrestha AK; Gidley MJ; Gilbert EP
    Biomacromolecules; 2008 Jul; 9(7):1951-8. PubMed ID: 18529077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of porous starches obtained from different enzyme types and levels.
    Benavent-Gil Y; Rosell CM
    Carbohydr Polym; 2017 Feb; 157():533-540. PubMed ID: 27987959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of starch granule-associated proteins affects amyloglucosidase hydrolysis of rice starch granules.
    Ma M; Xu Z; Li P; Sui Z; Corke H
    Carbohydr Polym; 2020 Nov; 247():116674. PubMed ID: 32829802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The interplay of α-amylase and amyloglucosidase activities on the digestion of starch in in vitro enzymic systems.
    Warren FJ; Zhang B; Waltzer G; Gidley MJ; Dhital S
    Carbohydr Polym; 2015 Mar; 117():192-200. PubMed ID: 25498625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization and Application of BiLA, a Psychrophilic α-Amylase from Bifidobacterium longum.
    Lee HW; Jeon HY; Choi HJ; Kim NR; Choung WJ; Koo YS; Ko DS; You S; Shim JH
    J Agric Food Chem; 2016 Apr; 64(13):2709-18. PubMed ID: 26979859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High amylose wheat starch structures display unique fermentability characteristics, microbial community shifts and enzyme degradation profiles.
    Bui AT; Williams BA; Hoedt EC; Morrison M; Mikkelsen D; Gidley MJ
    Food Funct; 2020 Jun; 11(6):5635-5646. PubMed ID: 32537617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Digestion kinetics of low, intermediate and highly branched maltodextrins produced from gelatinized starches with various microbial glycogen branching enzymes.
    Zhang X; Leemhuis H; van der Maarel MJEC
    Carbohydr Polym; 2020 Nov; 247():116729. PubMed ID: 32829851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variation in amylose fine structure of starches from different botanical sources.
    Wang K; Hasjim J; Wu AC; Henry RJ; Gilbert RG
    J Agric Food Chem; 2014 May; 62(19):4443-53. PubMed ID: 24758598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular rearrangement of waxy and normal maize starch granules during in vitro digestion.
    Teng A; Witt T; Wang K; Li M; Hasjim J
    Carbohydr Polym; 2016 Mar; 139():10-9. PubMed ID: 26794941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistic and antagonistic effects of α-Amylase and amyloglucosidase on starch digestion.
    Zhang B; Dhital S; Gidley MJ
    Biomacromolecules; 2013 Jun; 14(6):1945-54. PubMed ID: 23647443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship between the molecular structure of duckweed starch and its in vitro enzymatic degradation kinetics.
    de Souza Moretti MM; Yu W; Zou W; Franco CML; Albertin LL; Schenk PM; Gilbert RG
    Int J Biol Macromol; 2019 Oct; 139():244-251. PubMed ID: 31374280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Porous high amylose rice starch modified by amyloglucosidase and maltogenic α-amylase.
    Keeratiburana T; Hansen AR; Soontaranon S; Blennow A; Tongta S
    Carbohydr Polym; 2020 Feb; 230():115611. PubMed ID: 31887905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amylosucrase-modified waxy potato starches recrystallized with amylose: The role of amylopectin chain length in formation of low-digestible fractions.
    Kim HR; Choi SJ; Choi HD; Park CS; Moon TW
    Food Chem; 2020 Jul; 318():126490. PubMed ID: 32146307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of enzymatic treatment of different starch sources on the in vitro rate and extent of starch digestion.
    Kasprzak MM; Lærke HN; Hofmann Larsen F; Bach Knudsen KE; Pedersen S; Jørgensen AS
    Int J Mol Sci; 2012; 13(1):929-942. PubMed ID: 22312295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Revisiting Mechanisms Underlying Digestion of Starches.
    Wang Y; Chao C; Huang H; Wang S; Wang S; Wang S; Copeland L
    J Agric Food Chem; 2019 Jul; 67(29):8212-8226. PubMed ID: 31309827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Causal relations among starch fine molecular structure, lamellar/crystalline structure and in vitro digestion kinetics of native rice starch.
    Li C; Hu Y; Gu F; Gong B
    Food Funct; 2021 Jan; 12(2):682-695. PubMed ID: 33410441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.