These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 35244334)

  • 21. Shrinkable Nanotubes for Duplex Formation of Short Nucleotides.
    Kameta N; Akiyama H
    Small; 2018 Aug; 14(34):e1801967. PubMed ID: 30019846
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular-Level Understanding of the Encapsulation and Dissolution of Poorly Water-Soluble Ibuprofen by Functionalized Organic Nanotubes Using Solid-State NMR Spectroscopy.
    Liu N; Higashi K; Kikuchi J; Ando S; Kameta N; Ding W; Masuda M; Shimizu T; Ueda K; Yamamoto K; Moribe K
    J Phys Chem B; 2016 May; 120(19):4496-507. PubMed ID: 27123961
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stimuli-Responsive, Dynamic Supramolecular Organic Frameworks.
    Pedrini A; Marchetti D; Pinalli R; Massera C
    Chempluschem; 2023 Dec; 88(12):e202300383. PubMed ID: 37675865
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multi-Stimuli-Responsive Janus Hollow Polydopamine Nanotubes.
    Sun Y; Davis EW
    Langmuir; 2022 Aug; 38(32):9777-9789. PubMed ID: 35921245
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Supramolecular dendritic polymers: from synthesis to applications.
    Dong R; Zhou Y; Zhu X
    Acc Chem Res; 2014 Jul; 47(7):2006-16. PubMed ID: 24779892
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Responsive Supramolecular Polymers for Diagnosis and Treatment.
    Martínez-Orts M; Pujals S
    Int J Mol Sci; 2024 Apr; 25(7):. PubMed ID: 38612886
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Photoinduced morphological transformations of soft nanotubes.
    Kameta N; Masuda M; Shimizu T
    Chemistry; 2015 Jun; 21(24):8832-9. PubMed ID: 25951299
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Supramolecular disassembly of facially amphiphilic dendrimer assemblies in response to physical, chemical, and biological stimuli.
    Raghupathi KR; Guo J; Munkhbat O; Rangadurai P; Thayumanavan S
    Acc Chem Res; 2014 Jul; 47(7):2200-11. PubMed ID: 24937682
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stimuli-responsive supramolecular polymers in aqueous solution.
    Ma X; Tian H
    Acc Chem Res; 2014 Jul; 47(7):1971-81. PubMed ID: 24669851
    [TBL] [Abstract][Full Text] [Related]  

  • 30. ABC triblock terpolymer self-assembled core-shell-corona nanotubes with high aspect ratios.
    Wang L; Huang H; He T
    Macromol Rapid Commun; 2014 Aug; 35(16):1387-96. PubMed ID: 24789700
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Supramolecular Nanotube Reactors for Production of Imine Polymers with Controlled Conformation, Size, and Chirality.
    Kameta N; Ding W
    Small; 2019 May; 15(19):e1900682. PubMed ID: 30920781
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular Recognition Driven Bioinspired Directional Supramolecular Assembly of Amphiphilic (Macro)molecules and Proteins.
    Sikder A; Chakraborty S; Rajdev P; Dey P; Ghosh S
    Acc Chem Res; 2021 Jun; 54(11):2670-2682. PubMed ID: 34014638
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dissecting the "Blue Box": Self-Assembly Strategies for the Construction of Multipurpose Polycationic Cyclophanes.
    Neira I; Blanco-Gómez A; Quintela JM; García MD; Peinador C
    Acc Chem Res; 2020 Oct; 53(10):2336-2346. PubMed ID: 32915539
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High aspect ratio nanotubes assembled from macrocyclic iminium salts.
    Sun C; Shen M; Chavez AD; Evans AM; Liu X; Harutyunyan B; Flanders NC; Hersam MC; Bedzyk MJ; Olvera de la Cruz M; Dichtel WR
    Proc Natl Acad Sci U S A; 2018 Sep; 115(36):8883-8888. PubMed ID: 30131427
    [TBL] [Abstract][Full Text] [Related]  

  • 35. MOF-based multi-stimuli-responsive supramolecular nanoplatform equipped with macrocycle nanovalves for plant growth regulation.
    Yang J; Dai D; Cai Z; Liu YQ; Qin JC; Wang Y; Yang YW
    Acta Biomater; 2021 Oct; 134():664-673. PubMed ID: 34329784
    [TBL] [Abstract][Full Text] [Related]  

  • 36. pH-controlled aggregation polymorphism of amyloidogenic Aβ(16-22): insights for obtaining peptide tapes and peptide nanotubes, as function of the N-terminal capping moiety.
    Elgersma RC; Kroon-Batenburg LM; Posthuma G; Meeldijk JD; Rijkers DT; Liskamp RM
    Eur J Med Chem; 2014 Dec; 88():55-65. PubMed ID: 25087966
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Solvent-polarity-tuned morphology and inversion of supramolecular chirality in a self-assembled pyridylpyrazole-linked glutamide derivative: nanofibers, nanotwists, nanotubes, and microtubes.
    Jin Q; Zhang L; Liu M
    Chemistry; 2013 Jul; 19(28):9234-41. PubMed ID: 23729195
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Supramolecular naphthalenediimide nanotubes.
    Ponnuswamy N; Stefankiewicz AR; Sanders JK; Pantoş GD
    Top Curr Chem; 2012; 322():217-60. PubMed ID: 22160390
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spatially Controlled Supramolecular Polymerization of Peptide Nanotubes by Microfluidics.
    Méndez-Ardoy A; Bayón-Fernández A; Yu Z; Abell C; Granja JR; Montenegro J
    Angew Chem Int Ed Engl; 2020 Apr; 59(17):6902-6908. PubMed ID: 32017352
    [TBL] [Abstract][Full Text] [Related]  

  • 40. DNA Nanotubes with Hydrophobic Environments: Toward New Platforms for Guest Encapsulation and Cellular Delivery.
    Rahbani JF; Vengut-Climent E; Chidchob P; Gidi Y; Trinh T; Cosa G; Sleiman HF
    Adv Healthc Mater; 2018 Mar; 7(6):e1701049. PubMed ID: 29356412
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.