These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 35244425)

  • 1. Surface Diffusion Is Controlled by Bulk Fragility across All Glass Types.
    Li Y; Annamareddy A; Morgan D; Yu Z; Wang B; Cao C; Perepezko JH; Ediger MD; Voyles PM; Yu L
    Phys Rev Lett; 2022 Feb; 128(7):075501. PubMed ID: 35244425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Factors correlating to enhanced surface diffusion in metallic glasses.
    Annamareddy A; Li Y; Yu L; Voyles PM; Morgan D
    J Chem Phys; 2021 Mar; 154(10):104502. PubMed ID: 33722035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Invariant Fast Diffusion on the Surfaces of Ultrastable and Aged Molecular Glasses.
    Zhang Y; Fakhraai Z
    Phys Rev Lett; 2017 Feb; 118(6):066101. PubMed ID: 28234512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface mobility of molecular glasses and its importance in physical stability.
    Yu L
    Adv Drug Deliv Rev; 2016 May; 100():3-9. PubMed ID: 26774328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlating Ultrastability with Fragility and Surface Mobility in Vapor Deposited Tetrahedral Glasses.
    Leoni F; Martelli F; Russo J
    J Phys Chem Lett; 2024 Aug; 15(33):8444-8450. PubMed ID: 39121353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of fragility in the formation of highly stable organic glasses.
    Sepúlveda A; Tylinski M; Guiseppi-Elie A; Richert R; Ediger MD
    Phys Rev Lett; 2014 Jul; 113(4):045901. PubMed ID: 25105633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface self-diffusion of organic glasses.
    Brian CW; Yu L
    J Phys Chem A; 2013 Dec; 117(50):13303-9. PubMed ID: 23829661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Devitrification properties of vapor-deposited ethylcyclohexane glasses and interpretation of the molecular mechanism for formation of vapor-deposited glasses.
    Ramos SL; Chigira AK; Oguni M
    J Phys Chem B; 2015 Mar; 119(10):4076-83. PubMed ID: 25692319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determining the fragility of bulk metallic glass forming liquids via modulated DSC.
    Frey M; Neuber N; Gross O; Zimmer B; Possart W; Busch R
    J Phys Condens Matter; 2020 May; 32(32):. PubMed ID: 32235055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hiking down the energy landscape: progress toward the Kauzmann temperature via vapor deposition.
    Kearns KL; Swallen SF; Ediger MD; Wu T; Sun Y; Yu L
    J Phys Chem B; 2008 Apr; 112(16):4934-42. PubMed ID: 18386872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-temperature bulk metallic glasses developed by combinatorial methods.
    Li MX; Zhao SF; Lu Z; Hirata A; Wen P; Bai HY; Chen M; Schroers J; Liu Y; Wang WH
    Nature; 2019 May; 569(7754):99-103. PubMed ID: 31043727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of molecular size and hydrogen bonding on three surface-facilitated processes in molecular glasses: Surface diffusion, surface crystal growth, and formation of stable glasses by vapor deposition.
    Chen Y; Chen Z; Tylinski M; Ediger MD; Yu L
    J Chem Phys; 2019 Jan; 150(2):024502. PubMed ID: 30646711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface diffusion in glasses of rod-like molecules posaconazole and itraconazole: effect of interfacial molecular alignment and bulk penetration.
    Li Y; Zhang W; Bishop C; Huang C; Ediger MD; Yu L
    Soft Matter; 2020 Jun; 16(21):5062-5070. PubMed ID: 32453335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast Surface Dynamics on a Metallic Glass Nanowire.
    Chatterjee D; Annamareddy A; Ketkaew J; Schroers J; Morgan D; Voyles PM
    ACS Nano; 2021 Jul; 15(7):11309-11316. PubMed ID: 34152730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogen Bonding Slows Down Surface Diffusion of Molecular Glasses.
    Chen Y; Zhang W; Yu L
    J Phys Chem B; 2016 Aug; 120(32):8007-15. PubMed ID: 27404465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ionic diffusion and the topological origin of fragility in silicate glasses.
    Smedskjaer MM; Mauro JC; Yue Y
    J Chem Phys; 2009 Dec; 131(24):244514. PubMed ID: 20059086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glass Dynamics Deep in the Energy Landscape.
    Ediger MD; Gruebele M; Lubchenko V; Wolynes PG
    J Phys Chem B; 2021 Aug; 125(32):9052-9068. PubMed ID: 34357766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ni- and Be-free Zr-based bulk metallic glasses with high glass-forming ability and unusual plasticity.
    Zhu S; Xie G; Qin F; Wang X; Inoue A
    J Mech Behav Biomed Mater; 2012 Sep; 13():166-73. PubMed ID: 22898203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystallization of organic glasses: effects of polymer additives on bulk and surface crystal growth in amorphous nifedipine.
    Cai T; Zhu L; Yu L
    Pharm Res; 2011 Oct; 28(10):2458-66. PubMed ID: 21638137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of glass-forming liquids. XV. Dynamical features of molecular liquids that form ultra-stable glasses by vapor deposition.
    Chen Z; Richert R
    J Chem Phys; 2011 Sep; 135(12):124515. PubMed ID: 21974543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.