BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 35244630)

  • 1. Chirality-directed hydrogel assembly and interactions with enantiomers of an active pharmaceutical ingredient.
    Patterson AK; El-Qarra LH; Smith DK
    Chem Commun (Camb); 2022 Mar; 58(24):3941-3944. PubMed ID: 35244630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling supramolecular filament chirality of hydrogel by co-assembly of enantiomeric aromatic peptides.
    Yang X; Lu H; Tao Y; Zhang H; Wang H
    J Nanobiotechnology; 2022 Feb; 20(1):77. PubMed ID: 35144637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced mechanical rigidity of hydrogels formed from enantiomeric peptide assemblies.
    Nagy KJ; Giano MC; Jin A; Pochan DJ; Schneider JP
    J Am Chem Soc; 2011 Sep; 133(38):14975-7. PubMed ID: 21863803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatially-resolved soft materials for controlled release - hybrid hydrogels combining a robust photo-activated polymer gel with an interactive supramolecular gel.
    Chivers PRA; Smith DK
    Chem Sci; 2017 Oct; 8(10):7218-7227. PubMed ID: 29081954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chiral bis(amino acid)- and bis(amino alcohol)-oxalamide gelators. Gelation properties, self-assembly motifs and chirality effects.
    Frkanec L; Zinić M
    Chem Commun (Camb); 2010 Jan; 46(4):522-37. PubMed ID: 20062853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gelation of a π-Decorated Glutamate as a Homochiral Selective Self-assembly to Obtain Macroscopic Chiral Symmetry Breaking.
    Tashiro K; Takei T; Fracaroli AM; Ohtsu H; Kawano M; Hashizume D
    Chem Asian J; 2022 May; 17(10):e202200230. PubMed ID: 35332668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amino Acid Chirality and Ferrocene Conformation Guided Self-Assembly and Gelation of Ferrocene-Peptide Conjugates.
    Adhikari B; Singh C; Shah A; Lough AJ; Kraatz HB
    Chemistry; 2015 Aug; 21(32):11560-72. PubMed ID: 26121412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tuning the gelation ability of racemic mixture by melamine: enhanced mechanical rigidity and tunable nanoscale chirality.
    Shen Z; Wang T; Liu M
    Langmuir; 2014 Sep; 30(35):10772-8. PubMed ID: 25136742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-assembled gel tubes, filaments and 3D-printing with
    Piras CC; Kay AG; Genever PG; Fitremann J; Smith DK
    Chem Sci; 2022 Feb; 13(7):1972-1981. PubMed ID: 35308847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequential Assembly of Mutually Interactive Supramolecular Hydrogels and Fabrication of Multi-Domain Materials.
    Piras CC; Smith DK
    Chemistry; 2019 Aug; 25(48):11318-11326. PubMed ID: 31237367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interparticle chiral recognition of enantiomers: a nanoparticle-based regulation strategy.
    Lim II; Mott D; Engelhard MH; Pan Y; Kamodia S; Luo J; Njoki PN; Zhou S; Wang L; Zhong CJ
    Anal Chem; 2009 Jan; 81(2):689-98. PubMed ID: 19072589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective growth and distribution of crystalline enantiomers in hydrogels.
    Petrova RI; Swift JA
    J Am Chem Soc; 2004 Feb; 126(4):1168-73. PubMed ID: 14746486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Homochiral Evolution in Self-Assembled Chiral Polymers and Block Copolymers.
    Wen T; Wang HF; Li MC; Ho RM
    Acc Chem Res; 2017 Apr; 50(4):1011-1021. PubMed ID: 28257188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chiral gelators for visual enantiomeric recognition.
    Gambhir D; Kumar S; Koner RR
    Soft Matter; 2022 May; 18(19):3624-3637. PubMed ID: 35481833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new pH and thermo-responsive chiral hydrogel for stimulated release.
    Shankar BV; Patnaik A
    J Phys Chem B; 2007 Aug; 111(31):9294-300. PubMed ID: 17629325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-component dendritic gel: effect of stereochemistry on the supramolecular chiral assembly.
    Hirst AR; Smith DK; Feiters MC; Geurts HP
    Chemistry; 2004 Nov; 10(23):5901-10. PubMed ID: 15472938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-assembled ultralong chiral nanotubes and tuning of their chirality through the mixing of enantiomeric components.
    Zhu X; Li Y; Duan P; Liu M
    Chemistry; 2010 Jul; 16(27):8034-40. PubMed ID: 20521286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enantiomeric Excess-Tuned 2D Structural Transition: From Heterochiral to Homochiral Supramolecular Assemblies.
    Li SY; Chen T; Wang L; Sun B; Wang D; Wan LJ
    Langmuir; 2016 Jul; 32(27):6830-5. PubMed ID: 27287273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Propagation of chirality in mixtures of natural and enantiomeric DNA oligomers.
    Rossi M; Zanchetta G; Klussmann S; Clark NA; Bellini T
    Phys Rev Lett; 2013 Mar; 110(10):107801. PubMed ID: 23521299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structures formed by the chiral assembly of racemic mixtures of enantiomers: iodination products of elaidic and oleic acids.
    Cai Y; Bernasek SL
    J Phys Chem B; 2005 Mar; 109(10):4514-9. PubMed ID: 16851527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.