These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 35244649)

  • 1. Multi-resistive pulse sensor microfluidic device.
    Pollard M; Maugi R; Platt M
    Analyst; 2022 Mar; 147(7):1417-1424. PubMed ID: 35244649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic Time-Division Multiplexing Accessing Resistive Pulse Sensor for Particle Analysis.
    Choi G; Murphy E; Guan W
    ACS Sens; 2019 Jul; 4(7):1957-1963. PubMed ID: 31264411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Additively Manufactured Flow-Resistive Pulse Sensors.
    Hampson SM; Pollard M; Hauer P; Salway H; Christie SDR; Platt M
    Anal Chem; 2019 Feb; 91(4):2947-2954. PubMed ID: 30652483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical Modelling of a Nanopore-based Resistive-Pulse Sensor for Detection of Biomolecules.
    Berkenbrock JA; Scherer T; Mail M; Achenbach S
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4278-4281. PubMed ID: 33018941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-throughput and sensitive particle counting by a novel microfluidic differential resistive pulse sensor with multidetecting channels and a common reference channel.
    Song Y; Yang J; Pan X; Li D
    Electrophoresis; 2015 Feb; 36(4):495-501. PubMed ID: 25363672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic particle detection and sorting in an electrokinetic microfluidic chip.
    Song Y; Peng R; Wang J; Pan X; Sun Y; Li D
    Electrophoresis; 2013 Mar; 34(5):684-90. PubMed ID: 23172422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid Detection of Microparticles Using a Microfluidic Resistive Pulse Sensor Based on Bipolar Pulse-Width Multiplexing.
    Xu R; Ouyang L; Shaik R; Chen H; Zhang G; Zhe J
    Biosensors (Basel); 2023 Jul; 13(7):. PubMed ID: 37504119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A method for reproducibly preparing synthetic nanopores for resistive-pulse biosensors.
    Wharton JE; Jin P; Sexton LT; Horne LP; Sherrill SA; Mino WK; Martin CR
    Small; 2007 Aug; 3(8):1424-30. PubMed ID: 17615589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective target protein detection using a decorated nanopore into a microfluidic device.
    Fujinami Tanimoto IM; Cressiot B; Jarroux N; Roman J; Patriarche G; Le Pioufle B; Pelta J; Bacri L
    Biosens Bioelectron; 2021 Jul; 183():113195. PubMed ID: 33857755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlled gating and electrical detection of single 50S ribosomal subunits through a solid-state nanopore in a microfluidic chip.
    Rudenko MI; Holmes MR; Ermolenko DN; Lunt EJ; Gerhardt S; Noller HF; Deamer DW; Hawkins A; Schmidt H
    Biosens Bioelectron; 2011 Nov; 29(1):34-9. PubMed ID: 21855314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel microfluidic resistive pulse sensor with multiple voltage input channels and a side sensing gate for particle and cell detection.
    Zhou T; Song Y; Yuan Y; Li D
    Anal Chim Acta; 2019 Apr; 1052():113-123. PubMed ID: 30685029
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methods for counting particles in microfluidic applications.
    Zhang H; Chon CH; Pan X; Li D
    Microfluid Nanofluidics; 2009; 7(6):739. PubMed ID: 32214956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous Sampling of Aerosolized Particles Using Stratified Two-Phase Microfluidics.
    Ahasan K; Schnoebelen NJ; Shrotriya P; Kingston TA
    ACS Sens; 2024 Jun; 9(6):2915-2924. PubMed ID: 38848499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic impedance cytometry device with N-shaped electrodes for lateral position measurement of single cells/particles.
    Yang D; Ai Y
    Lab Chip; 2019 Nov; 19(21):3609-3617. PubMed ID: 31517354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Tunable Three-Dimensional Printed Microfluidic Resistive Pulse Sensor for the Characterization of Algae and Microplastics.
    Pollard M; Hunsicker E; Platt M
    ACS Sens; 2020 Aug; 5(8):2578-2586. PubMed ID: 32638589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In-Plane, In-Series Nanopores with Circular Cross Sections for Resistive-Pulse Sensing.
    Zhang M; Harms ZD; Greibe T; Starr CA; Zlotnick A; Jacobson SC
    ACS Nano; 2022 May; 16(5):7352-7360. PubMed ID: 35500295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual characterization of biological cells by optofluidic microscope and resistive pulse sensor.
    Guo J; Chen L; Huang X; Li CM; Ai Y; Kang Y
    Electrophoresis; 2015 Feb; 36(3):420-3. PubMed ID: 25088789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection and identification of single ribonucleotide monophosphates using a dual in-plane nanopore sensor made in a thermoplastic
    Rathnayaka C; Chandrosoma IA; Choi J; Childers K; Chibuike M; Akabirov K; Shiri F; Hall AR; Lee M; McKinney C; Verber M; Park S; Soper SA
    Lab Chip; 2024 May; 24(10):2721-2735. PubMed ID: 38656267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying Single Particles in Air Using a 3D-Integrated Solid-State Pore.
    Tsutsui M; Yokota K; Yoshida T; Hotehama C; Kowada H; Esaki Y; Taniguchi M; Washio T; Kawai T
    ACS Sens; 2019 Mar; 4(3):748-755. PubMed ID: 30788967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanofluidic Devices with 8 Pores in Series for Real-Time, Resistive-Pulse Analysis of Hepatitis B Virus Capsid Assembly.
    Kondylis P; Zhou J; Harms ZD; Kneller AR; Lee LS; Zlotnick A; Jacobson SC
    Anal Chem; 2017 May; 89(9):4855-4862. PubMed ID: 28322548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.