BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 35244715)

  • 1. CRISPR/Cas13 effectors have differing extents of off-target effects that limit their utility in eukaryotic cells.
    Ai Y; Liang D; Wilusz JE
    Nucleic Acids Res; 2022 Jun; 50(11):e65. PubMed ID: 35244715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of specific RNA knockdown in mammalian cells with CRISPR-Cas13.
    Burris BJD; Molina Vargas AM; Park BJ; O'Connell MR
    Methods; 2022 Oct; 206():58-68. PubMed ID: 35987443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insights Gained from RNA Editing Targeted by the CRISPR-Cas13 Family.
    Liu L; Pei DS
    Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Mechanisms of RNA Targeting by Cas13-containing Type VI CRISPR-Cas Systems.
    O'Connell MR
    J Mol Biol; 2019 Jan; 431(1):66-87. PubMed ID: 29940185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CASowary: CRISPR-Cas13 guide RNA predictor for transcript depletion.
    Krohannon A; Srivastava M; Rauch S; Srivastava R; Dickinson BC; Janga SC
    BMC Genomics; 2022 Mar; 23(1):172. PubMed ID: 35236300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Programmable RNA targeting with CRISPR-Cas13.
    Shi P; Wu X
    RNA Biol; 2024 Jan; 21(1):1-9. PubMed ID: 38764173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A versatile toolkit for CRISPR-Cas13-based RNA manipulation in Drosophila.
    Huynh N; Depner N; Larson R; King-Jones K
    Genome Biol; 2020 Nov; 21(1):279. PubMed ID: 33203452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural basis for the activation of a compact CRISPR-Cas13 nuclease.
    Deng X; Osikpa E; Yang J; Oladeji SJ; Smith J; Gao X; Gao Y
    Nat Commun; 2023 Sep; 14(1):5845. PubMed ID: 37730702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-fidelity Cas13 variants for targeted RNA degradation with minimal collateral effects.
    Tong H; Huang J; Xiao Q; He B; Dong X; Liu Y; Yang X; Han D; Wang Z; Wang X; Ying W; Zhang R; Wei Y; Xu C; Zhou Y; Li Y; Cai M; Wang Q; Xue M; Li G; Fang K; Zhang H; Yang H
    Nat Biotechnol; 2023 Jan; 41(1):108-119. PubMed ID: 35953673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The double life of CRISPR-Cas13.
    Bot JF; van der Oost J; Geijsen N
    Curr Opin Biotechnol; 2022 Dec; 78():102789. PubMed ID: 36115160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and engineering of the minimal type VI CRISPR-Cas13bt3.
    Nakagawa R; Kannan S; Altae-Tran H; Takeda SN; Tomita A; Hirano H; Kusakizako T; Nishizawa T; Yamashita K; Zhang F; Nishimasu H; Nureki O
    Mol Cell; 2022 Sep; 82(17):3178-3192.e5. PubMed ID: 36027912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNA Guide Complementarity Prevents Self-Targeting in Type VI CRISPR Systems.
    Meeske AJ; Marraffini LA
    Mol Cell; 2018 Sep; 71(5):791-801.e3. PubMed ID: 30122537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intrinsic targeting of host RNA by Cas13 constrains its utility.
    Li Z; Li Z; Cheng X; Wang S; Wang X; Ma S; Lu Z; Zhang H; Zhao W; Chen Z; Yao Y; Zhang C; Chao L; Li W; Fei T
    Nat Biomed Eng; 2024 Feb; 8(2):177-192. PubMed ID: 37872368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural basis for self-cleavage prevention by tag:anti-tag pairing complementarity in type VI Cas13 CRISPR systems.
    Wang B; Zhang T; Yin J; Yu Y; Xu W; Ding J; Patel DJ; Yang H
    Mol Cell; 2021 Mar; 81(5):1100-1115.e5. PubMed ID: 33472057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional Features and Current Applications of the RNA-Targeting Type VI CRISPR-Cas Systems.
    PerĨulija V; Lin J; Zhang B; Ouyang S
    Adv Sci (Weinh); 2021 Jul; 8(13):2004685. PubMed ID: 34254038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In silico optimization of RNA-protein interactions for CRISPR-Cas13-based antimicrobials.
    Park HM; Park Y; Berani U; Bang E; Vankerschaver J; Van Messem A; De Neve W; Shim H
    Biol Direct; 2022 Oct; 17(1):27. PubMed ID: 36207756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential Use of CRISPR/Cas13 Machinery in Understanding Virus-Host Interaction.
    Bayoumi M; Munir M
    Front Microbiol; 2021; 12():743580. PubMed ID: 34899631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Collateral activity of the CRISPR/RfxCas13d system in human cells.
    Shi P; Murphy MR; Aparicio AO; Kesner JS; Fang Z; Chen Z; Trehan A; Guo Y; Wu X
    Commun Biol; 2023 Mar; 6(1):334. PubMed ID: 36977923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Orthogonal inducible control of Cas13 circuits enables programmable RNA regulation in mammalian cells.
    Ding Y; Tous C; Choi J; Chen J; Wong WW
    Nat Commun; 2024 Feb; 15(1):1572. PubMed ID: 38383558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapidly Characterizing CRISPR-Cas13 Nucleases Using Cell-Free Transcription-Translation Systems.
    Wandera KG; Beisel CL
    Methods Mol Biol; 2022; 2404():135-153. PubMed ID: 34694607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.