BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 35244890)

  • 21. GRP78 in lung cancer.
    Xia S; Duan W; Liu W; Zhang X; Wang Q
    J Transl Med; 2021 Mar; 19(1):118. PubMed ID: 33743739
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The novel HSP90 inhibitor STA-1474 exhibits biologic activity against osteosarcoma cell lines.
    McCleese JK; Bear MD; Fossey SL; Mihalek RM; Foley KP; Ying W; Barsoum J; London CA
    Int J Cancer; 2009 Dec; 125(12):2792-801. PubMed ID: 19544563
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transcriptional repression of the prosurvival endoplasmic reticulum chaperone GRP78/BIP by E2F1.
    Racek T; Buhlmann S; Rüst F; Knoll S; Alla V; Pützer BM
    J Biol Chem; 2008 Dec; 283(49):34305-14. PubMed ID: 18840615
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Targeting HSP70 chaperones by rhein sensitizes liver cancer to artemisinin derivatives.
    Wang J; Zhang J; Guo Z; Hua H; Zhang H; Liu Y; Jiang Y
    Phytomedicine; 2024 Jan; 122():155156. PubMed ID: 37897861
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sequential interaction of the chaperones BiP and GRP94 with immunoglobulin chains in the endoplasmic reticulum.
    Melnick J; Dul JL; Argon Y
    Nature; 1994 Aug; 370(6488):373-5. PubMed ID: 7913987
    [TBL] [Abstract][Full Text] [Related]  

  • 26. GRP78/BiP inhibits endoplasmic reticulum BIK and protects human breast cancer cells against estrogen starvation-induced apoptosis.
    Fu Y; Li J; Lee AS
    Cancer Res; 2007 Apr; 67(8):3734-40. PubMed ID: 17440086
    [TBL] [Abstract][Full Text] [Related]  

  • 27. AR-12 Inhibits Multiple Chaperones Concomitant With Stimulating Autophagosome Formation Collectively Preventing Virus Replication.
    Booth L; Roberts JL; Ecroyd H; Tritsch SR; Bavari S; Reid SP; Proniuk S; Zukiwski A; Jacob A; Sepúlveda CS; Giovannoni F; García CC; Damonte E; González-Gallego J; Tuñón MJ; Dent P
    J Cell Physiol; 2016 Oct; 231(10):2286-302. PubMed ID: 27187154
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Autoantibodies against the cell surface-associated chaperone GRP78 stimulate tumor growth via tissue factor.
    Al-Hashimi AA; Lebeau P; Majeed F; Polena E; Lhotak Š; Collins CAF; Pinthus JH; Gonzalez-Gronow M; Hoogenes J; Pizzo SV; Crowther M; Kapoor A; Rak J; Gyulay G; D'Angelo S; Marchiò S; Pasqualini R; Arap W; Shayegan B; Austin RC
    J Biol Chem; 2017 Dec; 292(51):21180-21192. PubMed ID: 29066620
    [TBL] [Abstract][Full Text] [Related]  

  • 29. OSU-03012 suppresses GRP78/BiP expression that causes PERK-dependent increases in tumor cell killing.
    Booth L; Cazanave SC; Hamed HA; Yacoub A; Ogretmen B; Chen CS; Grant S; Dent P
    Cancer Biol Ther; 2012 Feb; 13(4):224-36. PubMed ID: 22354011
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cellular Transcriptomics of Carboplatin Resistance in a Metastatic Canine Osteosarcoma Cell Line.
    Hodge MA; Miller T; Weinman MA; Wustefeld-Janssens B; Bracha S; Davis BW
    Genes (Basel); 2023 Feb; 14(3):. PubMed ID: 36980828
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Selective Inactivation of Intracellular BiP/GRP78 Attenuates Endothelial Inflammation and Permeability in Acute Lung Injury.
    Leonard A; Grose V; Paton AW; Paton JC; Yule DI; Rahman A; Fazal F
    Sci Rep; 2019 Feb; 9(1):2096. PubMed ID: 30765717
    [TBL] [Abstract][Full Text] [Related]  

  • 32. ATF4 destabilizes RET through nonclassical GRP78 inhibition to enhance chemosensitivity to bortezomib in human osteosarcoma.
    Luo J; Xia Y; Yin Y; Luo J; Liu M; Zhang H; Zhang C; Zhao Y; Yang L; Kong L
    Theranostics; 2019; 9(21):6334-6353. PubMed ID: 31534554
    [No Abstract]   [Full Text] [Related]  

  • 33. Long Interleukin-22 Binding Protein Isoform-1 Is an Intracellular Activator of the Unfolded Protein Response.
    Gómez-Fernández P; Urtasun A; Paton AW; Paton JC; Borrego F; Dersh D; Argon Y; Alloza I; Vandenbroeck K
    Front Immunol; 2018; 9():2934. PubMed ID: 30619294
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stress chaperone GRP78/BiP confers chemoresistance to tumor-associated endothelial cells.
    Virrey JJ; Dong D; Stiles C; Patterson JB; Pen L; Ni M; Schönthal AH; Chen TC; Hofman FM; Lee AS
    Mol Cancer Res; 2008 Aug; 6(8):1268-75. PubMed ID: 18708359
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exosomal proteomic signatures correlate with drug resistance and carboplatin treatment outcome in a spontaneous model of canine osteosarcoma.
    Weinman MA; Ramsey SA; Leeper HJ; Brady JV; Schlueter A; Stanisheuski S; Maier CS; Miller T; Ruby CE; Bracha S
    Cancer Cell Int; 2021 May; 21(1):245. PubMed ID: 33933069
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The interaction between RUNX2 and core binding factor beta as a potential therapeutic target in canine osteosarcoma.
    Alegre F; Ormonde AR; Godinez DR; Illendula A; Bushweller JH; Wittenburg LA
    Vet Comp Oncol; 2020 Mar; 18(1):52-63. PubMed ID: 31381810
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biological activity of gemcitabine against canine osteosarcoma cell lines in vitro.
    McMahon MB; Bear MD; Kulp SK; Pennell ML; London CA
    Am J Vet Res; 2010 Jul; 71(7):799-808. PubMed ID: 20594083
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Glucosamine-induced endoplasmic reticulum stress promotes ApoB100 degradation: evidence for Grp78-mediated targeting to proteasomal degradation.
    Qiu W; Kohen-Avramoglu R; Mhapsekar S; Tsai J; Austin RC; Adeli K
    Arterioscler Thromb Vasc Biol; 2005 Mar; 25(3):571-7. PubMed ID: 15618547
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Human cytomegalovirus specifically controls the levels of the endoplasmic reticulum chaperone BiP/GRP78, which is required for virion assembly.
    Buchkovich NJ; Maguire TG; Yu Y; Paton AW; Paton JC; Alwine JC
    J Virol; 2008 Jan; 82(1):31-9. PubMed ID: 17942541
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Expression and phosphorylation of BiP/GRP78, a molecular chaperone in the endoplasmic reticulum, during the differentiation of a mouse myeloblastic cell line.
    Nakai A; Kawatani T; Ohi S; Kawasaki H; Yoshimori T; Tashiro Y; Miyata Y; Yahara I; Satoh M; Nagata K
    Cell Struct Funct; 1995 Feb; 20(1):33-9. PubMed ID: 7796466
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.