BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 35245447)

  • 1. The proteogenomic subtypes of acute myeloid leukemia.
    Jayavelu AK; Wolf S; Buettner F; Alexe G; Häupl B; Comoglio F; Schneider C; Doebele C; Fuhrmann DC; Wagner S; Donato E; Andresen C; Wilke AC; Zindel A; Jahn D; Splettstoesser B; Plessmann U; Münch S; Abou-El-Ardat K; Makowka P; Acker F; Enssle JC; Cremer A; Schnütgen F; Kurrle N; Chapuy B; Löber J; Hartmann S; Wild PJ; Wittig I; Hübschmann D; Kaderali L; Cox J; Brüne B; Röllig C; Thiede C; Steffen B; Bornhäuser M; Trumpp A; Urlaub H; Stegmaier K; Serve H; Mann M; Oellerich T
    Cancer Cell; 2022 Mar; 40(3):301-317.e12. PubMed ID: 35245447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping the proteogenomic landscape enables prediction of drug response in acute myeloid leukemia.
    Pino JC; Posso C; Joshi SK; Nestor M; Moon J; Hansen JR; Hutchinson-Bunch C; Gritsenko MA; Weitz KK; Watanabe-Smith K; Long N; McDermott JE; Druker BJ; Liu T; Tyner JW; Agarwal A; Traer E; Piehowski PD; Tognon CE; Rodland KD; Gosline SJC
    Cell Rep Med; 2024 Jan; 5(1):101359. PubMed ID: 38232702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteogenomic analysis of acute myeloid leukemia associates relapsed disease with reprogrammed energy metabolism both in adults and children.
    Stratmann S; Vesterlund M; Umer HM; Eshtad S; Skaftason A; Herlin MK; Sundström C; Eriksson A; Höglund M; Palle J; Abrahamsson J; Jahnukainen K; Munthe-Kaas MC; Zeller B; Tamm KP; Lindskog C; Cavelier L; Lehtiö J; Holmfeldt L
    Leukemia; 2023 Mar; 37(3):550-559. PubMed ID: 36572751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteogenomics approaches for studying cancer biology and their potential in the identification of acute myeloid leukemia biomarkers.
    Hernandez-Valladares M; Vaudel M; Selheim F; Berven F; Bruserud Ø
    Expert Rev Proteomics; 2017 Aug; 14(8):649-663. PubMed ID: 28693350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Loss of H3K27 methylation identifies poor outcomes in adult-onset acute leukemia.
    van Dijk AD; Hoff FW; Qiu YH; Chandra J; Jabbour E; de Bont ESJM; Horton TM; Kornblau SM
    Clin Epigenetics; 2021 Jan; 13(1):21. PubMed ID: 33509276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BCL2 overexpression: clinical implication and biological insights in acute myeloid leukemia.
    Zhou JD; Zhang TJ; Xu ZJ; Gu Y; Ma JC; Li XX; Guo H; Wen XM; Zhang W; Yang L; Liu XH; Lin J; Qian J
    Diagn Pathol; 2019 Jun; 14(1):68. PubMed ID: 31253168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prognostic Significance of Complex Karyotypes in Acute Myeloid Leukemia.
    Daneshbod Y; Kohan L; Taghadosi V; Weinberg OK; Arber DA
    Curr Treat Options Oncol; 2019 Feb; 20(2):15. PubMed ID: 30741367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superior anti-tumor activity of the MDM2 antagonist idasanutlin and the Bcl-2 inhibitor venetoclax in p53 wild-type acute myeloid leukemia models.
    Lehmann C; Friess T; Birzele F; Kiialainen A; Dangl M
    J Hematol Oncol; 2016 Jun; 9(1):50. PubMed ID: 27353420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Association Between Mutation Clearance After Induction Therapy and Outcomes in Acute Myeloid Leukemia.
    Klco JM; Miller CA; Griffith M; Petti A; Spencer DH; Ketkar-Kulkarni S; Wartman LD; Christopher M; Lamprecht TL; Helton NM; Duncavage EJ; Payton JE; Baty J; Heath SE; Griffith OL; Shen D; Hundal J; Chang GS; Fulton R; O'Laughlin M; Fronick C; Magrini V; Demeter RT; Larson DE; Kulkarni S; Ozenberger BA; Welch JS; Walter MJ; Graubert TA; Westervelt P; Radich JP; Link DC; Mardis ER; DiPersio JF; Wilson RK; Ley TJ
    JAMA; 2015 Aug; 314(8):811-22. PubMed ID: 26305651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidative phosphorylation inhibition induces anticancerous changes in therapy-resistant-acute myeloid leukemia patient cells.
    Vitkevičienė A; Janulis V; Žučenka A; Borutinskaitė V; Kaupinis A; Valius M; Griškevičius L; Navakauskienė R
    Mol Carcinog; 2019 Nov; 58(11):2008-2016. PubMed ID: 31385375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 225Ac-labeled CD33-targeting antibody reverses resistance to Bcl-2 inhibitor venetoclax in acute myeloid leukemia models.
    Garg R; Allen KJH; Dawicki W; Geoghegan EM; Ludwig DL; Dadachova E
    Cancer Med; 2021 Feb; 10(3):1128-1140. PubMed ID: 33347715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting Mitochondrial Structure Sensitizes Acute Myeloid Leukemia to Venetoclax Treatment.
    Chen X; Glytsou C; Zhou H; Narang S; Reyna DE; Lopez A; Sakellaropoulos T; Gong Y; Kloetgen A; Yap YS; Wang E; Gavathiotis E; Tsirigos A; Tibes R; Aifantis I
    Cancer Discov; 2019 Jul; 9(7):890-909. PubMed ID: 31048321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Personalized Single-Cell Proteogenomics to Distinguish Acute Myeloid Leukemia from Non-Malignant Clonal Hematopoiesis.
    Dillon LW; Ghannam J; Nosiri C; Gui G; Goswami M; Calvo KR; Lindblad KE; Oetjen KA; Wilkerson MD; Soltis AR; Sukumar G; Dalgard CL; Thompson J; Valdez J; DeStefano CB; Lai C; Sciambi A; Durruthy-Durruthy R; Llanso A; Gulati S; Wang S; Ooi A; Dagur PK; McCoy JP; Burr P; Li Y; Hourigan CS
    Blood Cancer Discov; 2021 Jul; 2(4):319-325. PubMed ID: 34258102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of treatment failure in patients with minimally differentiated acute myeloid leukemia (AML-M0).
    Stasi R; Del Poeta G; Venditti A; Masi M; Stipa E; Dentamaro T; Cox C; Dallapiccola B; Papa G
    Blood; 1994 Mar; 83(6):1619-25. PubMed ID: 8123853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Durable remissions with venetoclax monotherapy in secondary AML refractory to hypomethylating agents and high expression of BCL-2 and/or BIM.
    Huemer F; Melchardt T; Jansko B; Wahida A; Jilg S; Jost PJ; Klieser E; Steiger K; Magnes T; Pleyer L; Greil-Ressler S; Rass C; Greil R; Egle A
    Eur J Haematol; 2019 May; 102(5):437-441. PubMed ID: 30725494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pairing MCL-1 inhibition with venetoclax improves therapeutic efficiency of BH3-mimetics in AML.
    Hormi M; Birsen R; Belhadj M; Huynh T; Cantero Aguilar L; Grignano E; Haddaoui L; Guillonneau F; Mayeux P; Hunault M; Tamburini J; Kosmider O; Fontenay M; Bouscary D; Chapuis N
    Eur J Haematol; 2020 Nov; 105(5):588-596. PubMed ID: 32659848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting Cellular Metabolism in Acute Myeloid Leukemia and The Role of Patient Heterogeneity.
    Grønningsæter IS; Reikvam H; Aasebø E; Bartaula-Brevik S; Tvedt TH; Bruserud Ø; Hatfield KJ
    Cells; 2020 May; 9(5):. PubMed ID: 32392896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Venetoclax for the treatment of elderly or chemotherapy-ineligible patients with acute myeloid leukemia: a step in the right direction or a game changer?
    Agarwal S; Kowalski A; Schiffer M; Zhao J; Bewersdorf JP; Zeidan AM
    Expert Rev Hematol; 2021 Feb; 14(2):199-210. PubMed ID: 33459064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BCL3 Expression Is a Potential Prognostic and Predictive Biomarker in Acute Myeloid Leukemia of FAB Subtype M2.
    Niu Y; Yang X; Chen Y; Zhang L; Jin X; Tang Y; Li L; Yu L; Guo Y; Wang H
    Pathol Oncol Res; 2019 Apr; 25(2):541-548. PubMed ID: 30357752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High expression of urokinase plasminogen activator receptor (UPA-R) in acute myeloid leukemia (AML) is associated with worse prognosis.
    Graf M; Reif S; Hecht K; Pelka-Fleischer R; Pfister K; Schmetzer H
    Am J Hematol; 2005 May; 79(1):26-35. PubMed ID: 15849776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.