These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 35245512)
1. An optimized procedure to record visual evoked potential in mice. Liu S; Xiang K; Lei Q; Qiu S; Xiang M; Jin K Exp Eye Res; 2022 May; 218():109011. PubMed ID: 35245512 [TBL] [Abstract][Full Text] [Related]
2. Comparative analysis of electroretinogram with subdermal and invasive recording methods in mice. Liu S; Yuan F; Xiang M Biochem Biophys Res Commun; 2023 May; 655():118-126. PubMed ID: 36934587 [TBL] [Abstract][Full Text] [Related]
3. Retinal function and neural conduction along the visual pathways in affected and unaffected carriers with Leber's hereditary optic neuropathy. Ziccardi L; Sadun F; De Negri AM; Barboni P; Savini G; Borrelli E; La Morgia C; Carelli V; Parisi V Invest Ophthalmol Vis Sci; 2013 Oct; 54(10):6893-901. PubMed ID: 24071953 [TBL] [Abstract][Full Text] [Related]
4. Semi-invasive and non-invasive recording of visual evoked potentials in mice. Marenna S; Castoldi V; d'Isa R; Marco C; Comi G; Leocani L Doc Ophthalmol; 2019 Jun; 138(3):169-179. PubMed ID: 30840173 [TBL] [Abstract][Full Text] [Related]
5. Characteristics of Visual Evoked Potential in Different Parts of Visual Impairment. Dai DK; Yang L; Meng HH; Chen XP; Tao LY Fa Yi Xue Za Zhi; 2021 Oct; 37(5):632-638. PubMed ID: 35187914 [TBL] [Abstract][Full Text] [Related]
6. Improving reproducibility of VEP recording in rats: electrodes, stimulus source and peak analysis. You Y; Klistorner A; Thie J; Graham SL Doc Ophthalmol; 2011 Oct; 123(2):109-19. PubMed ID: 21909708 [TBL] [Abstract][Full Text] [Related]
7. Visual recovery following optic nerve crush in male and female wild-type and TRIF-deficient mice. Du YL; Sergeeva EG; Stein DG Restor Neurol Neurosci; 2020; 38(5):355-368. PubMed ID: 32986632 [TBL] [Abstract][Full Text] [Related]
8. An interocular comparison of the multifocal VEP: a possible technique for detecting local damage to the optic nerve. Hood DC; Zhang X; Greenstein VC; Kangovi S; Odel JG; Liebmann JM; Ritch R Invest Ophthalmol Vis Sci; 2000 May; 41(6):1580-7. PubMed ID: 10798679 [TBL] [Abstract][Full Text] [Related]
9. Clinical aspects of the visually evoked potential. Weinstein GW Trans Am Ophthalmol Soc; 1977; 75():627-73. PubMed ID: 613533 [TBL] [Abstract][Full Text] [Related]
10. VEP analysis methods in children with optic nerve hypoplasia: relationship to visual acuity and optic disc diameter. Kelly JP; Phillips JO; Weiss AH Doc Ophthalmol; 2016 Dec; 133(3):159-169. PubMed ID: 27882486 [TBL] [Abstract][Full Text] [Related]
11. Electrophysiological and histologic assessment of retinal ganglion cell fate in a mouse model for OPA1-associated autosomal dominant optic atrophy. Heiduschka P; Schnichels S; Fuhrmann N; Hofmeister S; Schraermeyer U; Wissinger B; Alavi MV Invest Ophthalmol Vis Sci; 2010 Mar; 51(3):1424-31. PubMed ID: 19834041 [TBL] [Abstract][Full Text] [Related]
12. Correlation of Peripapillary Retinal Nerve Fibre Layer Thickness and Visual Evoked Potential in Optic Neuritis in a Tertiary Eye Care Centre. Godar MS; Sharma AK; Thapa M; Sitaula S; Gamal NS; Manandhar LD Nepal J Ophthalmol; 2018 Jul; 10(20):156-161. PubMed ID: 31056559 [TBL] [Abstract][Full Text] [Related]
13. 32-channel mouse EEG: Visual evoked potentials. Land R; Kapche A; Ebbers L; Kral A J Neurosci Methods; 2019 Sep; 325():108316. PubMed ID: 31251949 [TBL] [Abstract][Full Text] [Related]
14. Roles of Treg/Th17 Cell Imbalance and Neuronal Damage in the Visual Dysfunction Observed in Experimental Autoimmune Optic Neuritis Chronologically. Liu Y; You C; Zhang Z; Zhang J; Yan H Neuromolecular Med; 2015 Dec; 17(4):391-403. PubMed ID: 26318182 [TBL] [Abstract][Full Text] [Related]
15. Molecular, anatomical and functional changes in the retinal ganglion cells after optic nerve crush in mice. Yukita M; Machida S; Nishiguchi KM; Tsuda S; Yokoyama Y; Yasuda M; Maruyama K; Nakazawa T Doc Ophthalmol; 2015 Apr; 130(2):149-56. PubMed ID: 25560383 [TBL] [Abstract][Full Text] [Related]
16. Optical coherence tomography versus visual evoked potentials in detecting subclinical visual impairment in multiple sclerosis. Grecescu M J Med Life; 2014; 7(4):538-41. PubMed ID: 25713617 [TBL] [Abstract][Full Text] [Related]
17. Which ocular and neurologic conditions cause disparate results in visual acuity scores recorded with visually evoked potential and teller acuity cards? Westall CA; Ainsworth JR; Buncic JR J AAPOS; 2000 Oct; 4(5):295-301. PubMed ID: 11040480 [TBL] [Abstract][Full Text] [Related]
18. Electroretinogram and visual-evoked potentials in children with optic nerve coloboma. Tormene AP; Riva C Doc Ophthalmol; 1998-1999; 96(4):347-54. PubMed ID: 10855810 [TBL] [Abstract][Full Text] [Related]
19. Intraoperative visual evoked potential has no association with postoperative visual outcomes in transsphenoidal surgery. Chung SB; Park CW; Seo DW; Kong DS; Park SK Acta Neurochir (Wien); 2012 Aug; 154(8):1505-10. PubMed ID: 22739773 [TBL] [Abstract][Full Text] [Related]
20. Visual Evoked Potential Recording in a Rat Model of Experimental Optic Nerve Demyelination. You Y; Gupta VK; Chitranshi N; Reedman B; Klistorner A; Graham SL J Vis Exp; 2015 Jul; (101):e52934. PubMed ID: 26273963 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]