These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 35245605)
1. A specific primed immune response in red palm weevil, Rhynchophorus ferrugineus, is mediated by hemocyte differentiation and phagocytosis. Zhang H; Tan AR; Li PJ; Lu SP; Jia QC; Huang SN; Bai J; Hou YM Dev Comp Immunol; 2022 Jun; 131():104380. PubMed ID: 35245605 [TBL] [Abstract][Full Text] [Related]
2. Hemocytes of Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae) and their response to Saccharomyces cerevisiae and Bacillus thuringiensis. Manachini B; Arizza V; Parrinello D; Parrinello N J Invertebr Pathol; 2011 Mar; 106(3):360-5. PubMed ID: 21147119 [TBL] [Abstract][Full Text] [Related]
3. Mother-derived trans-generational immune priming in the red palm weevil, Rhynchophorus ferrugineus Olivier (Coleoptera, Dryophthoridae). Shi ZH; Lin YT; Hou YM Bull Entomol Res; 2014 Dec; 104(6):742-50. PubMed ID: 25208627 [TBL] [Abstract][Full Text] [Related]
4. An entomopathogenic bacterium strain, Bacillus thuringiensis, as a biological control agent against the red palm weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae). Pu YC; Ma TL; Hou YM; Sun M Pest Manag Sci; 2017 Jul; 73(7):1494-1502. PubMed ID: 27862867 [TBL] [Abstract][Full Text] [Related]
5. Proteolytic Activation of Bacillus thuringiensis Cry3Aa Toxin in the Red Palm Weevil (Coleoptera: Curculionidae). Guo Y; Sun Y; Liao Q; Carballar-LejarazĂș R; Sheng L; Wang S; Zhou J; Zhang F; Wu S J Econ Entomol; 2021 Dec; 114(6):2406-2411. PubMed ID: 34693979 [TBL] [Abstract][Full Text] [Related]
6. The specificity of immune priming in silkworm, Bombyx mori, is mediated by the phagocytic ability of granular cells. Wu G; Li M; Liu Y; Ding Y; Yi Y J Insect Physiol; 2015 Oct; 81():60-8. PubMed ID: 26159492 [TBL] [Abstract][Full Text] [Related]
7. Histopathological studies of red palm weevil Rhynchophorus ferrugineus, (Olivier) larvae and adults to evaluate certain nano pesticides. El-Fattah AYA; El-Wahab ASA; Jamal ZA; El-Helaly AA Braz J Biol; 2021; 81(1):195-201. PubMed ID: 32159618 [TBL] [Abstract][Full Text] [Related]
8. Toxicity of Plant Secondary Metabolites Modulating Detoxification Genes Expression for Natural Red Palm Weevil Pesticide Development. AlJabr AM; Hussain A; Rizwan-Ul-Haq M; Al-Ayedh H Molecules; 2017 Jan; 22(1):. PubMed ID: 28117698 [TBL] [Abstract][Full Text] [Related]
9. Disruption impact of citronella and menthol insecticides on adults behavior and hemocytes morphology in the red palm weevil Al Dawsari MM; Alam P Sci Prog; 2022; 105(1):368504221079437. PubMed ID: 35188836 [TBL] [Abstract][Full Text] [Related]
10. Priming Galleria mellonella (Lepidoptera: Pyralidae) larvae with heat-killed bacterial cells induced an enhanced immune protection against Photorhabdus luminescens TT01 and the role of innate immunity in the process. Wu G; Zhao Z; Liu C; Qiu L J Econ Entomol; 2014 Apr; 107(2):559-69. PubMed ID: 24772535 [TBL] [Abstract][Full Text] [Related]
11. Effects of an entomopathogen nematode on the immune response of the insect pest red palm weevil: Focus on the host antimicrobial response. Binda-Rossetti S; Mastore M; Protasoni M; Brivio MF J Invertebr Pathol; 2016 Jan; 133():110-9. PubMed ID: 26549224 [TBL] [Abstract][Full Text] [Related]
12. Neuropeptides and G-Protein Coupled Receptors (GPCRs) in the Red Palm Weevil Zhang H; Bai J; Huang S; Liu H; Lin J; Hou Y Front Physiol; 2020; 11():159. PubMed ID: 32184735 [TBL] [Abstract][Full Text] [Related]
13. Virulence of entomopathogenic bacteria Zhong B; Lv C; Li W; Li C; Chen T PeerJ; 2023; 11():e16528. PubMed ID: 38054022 [TBL] [Abstract][Full Text] [Related]
14. Behavioral and molecular response of the insect parasitic nematode Steinernema carpocapsae to cues emitted by a host, the red palm weevil, Rhynchophorus ferrugineus. Santhi VS; Ment D; Faigenboim A; Salame L; Soroker V; Hetzroni A; Glazer I Mol Biochem Parasitol; 2021 Jan; 241():111345. PubMed ID: 33290763 [TBL] [Abstract][Full Text] [Related]
15. Intestinal Microbiota Confer Protection by Priming the Immune System of Red Palm Weevil Muhammad A; Habineza P; Ji T; Hou Y; Shi Z Front Physiol; 2019; 10():1303. PubMed ID: 31681013 [TBL] [Abstract][Full Text] [Related]
16. Food Consumption, Developmental Time, and Protein Profile of the Digestive System of the Red Palm Weevil, Rhynchophorus ferrugineus (Coleptera: Dryophthoridae) Larvae Reared on Three Different Diets. Zulkifli AN; Zakeri HA; Azmi WA J Insect Sci; 2018 Sep; 18(5):. PubMed ID: 30285257 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of Entomopathogenic Nematodes against Red Palm Weevil, Rehman G; Mamoon-Ur-Rashid M Insects; 2022 Aug; 13(8):. PubMed ID: 36005358 [TBL] [Abstract][Full Text] [Related]
18. De novo transcriptome analysis and identification of reproduction control genes from the red palm weevil Rhynchophorus ferrugineus. Rasool KG; Mehmood K; Husain M; Tufail M; Alwaneen WS; Aldawood AS PLoS One; 2021; 16(5):e0251278. PubMed ID: 34029342 [TBL] [Abstract][Full Text] [Related]
19. Impact of artificial diets on the biological and chemical properties of red palm weevil, Rhynchophorus Ferrugineus Olivier (Coleoptera:Curculionidae). Abdel-Hameid NF Braz J Biol; 2022; 84():e264413. PubMed ID: 36169409 [TBL] [Abstract][Full Text] [Related]
20. In Vitro Evaluation of Antimicrobial Activity of Alimentary Canal Extracts from the Red Palm Weevil, Sewify GH; Hamada HM; Alhadrami HA Biomed Res Int; 2017; 2017():8564601. PubMed ID: 28612029 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]