These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 35245737)

  • 1. The ugly, bad, and good stories of large-scale biomolecular simulations.
    Gupta C; Sarkar D; Tieleman DP; Singharoy A
    Curr Opin Struct Biol; 2022 Apr; 73():102338. PubMed ID: 35245737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High performance computing in biology: multimillion atom simulations of nanoscale systems.
    Sanbonmatsu KY; Tung CS
    J Struct Biol; 2007 Mar; 157(3):470-80. PubMed ID: 17187988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of an informatics infrastructure for data exchange of biomolecular simulations: Architecture, data models and ontology.
    Thibault JC; Roe DR; Eilbeck K; Cheatham TE; Facelli JC
    SAR QSAR Environ Res; 2015; 26(7-9):577-93. PubMed ID: 26387907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New developments in force fields for biomolecular simulations.
    Nerenberg PS; Head-Gordon T
    Curr Opin Struct Biol; 2018 Apr; 49():129-138. PubMed ID: 29477047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pre-exascale HPC approaches for molecular dynamics simulations. Covid-19 research: A use case.
    Wieczór M; Genna V; Aranda J; Badia RM; Gelpí JL; Gapsys V; de Groot BL; Lindahl E; Municoy M; Hospital A; Orozco M
    Wiley Interdiscip Rev Comput Mol Sci; 2022 May; ():e1622. PubMed ID: 35935573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Grid computing and biomolecular simulation.
    Woods CJ; Ng MH; Johnston S; Murdock SE; Wu B; Tai K; Fangohr H; Jeffreys P; Cox S; Frey JG; Sansom MS; Essex JW
    Philos Trans A Math Phys Eng Sci; 2005 Aug; 363(1833):2017-35. PubMed ID: 16099764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding Computational Costs of Cellular-Level Brain Tissue Simulations Through Analytical Performance Models.
    Cremonesi F; Schürmann F
    Neuroinformatics; 2020 Jun; 18(3):407-428. PubMed ID: 32056104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Native structure-based modeling and simulation of biomolecular systems per mouse click.
    Lutz B; Sinner C; Bozic S; Kondov I; Schug A
    BMC Bioinformatics; 2014 Aug; 15(1):292. PubMed ID: 25176255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Appraisal of Computer Simulation Approaches in Elucidating Biomolecular Recognition Pathways.
    Ahalawat N; Mondal J
    J Phys Chem Lett; 2021 Jan; 12(1):633-641. PubMed ID: 33382941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiscale computing for science and engineering in the era of exascale performance.
    Hoekstra AG; Chopard B; Coster D; Portegies Zwart S; Coveney PV
    Philos Trans A Math Phys Eng Sci; 2019 Apr; 377(2142):20180144. PubMed ID: 30967040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling biomolecular kinetics with large-scale simulation.
    Kasson PM
    Curr Opin Struct Biol; 2022 Feb; 72():95-102. PubMed ID: 34592698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CHARMM-GUI 10 years for biomolecular modeling and simulation.
    Jo S; Cheng X; Lee J; Kim S; Park SJ; Patel DS; Beaven AH; Lee KI; Rui H; Park S; Lee HS; Roux B; MacKerell AD; Klauda JB; Qi Y; Im W
    J Comput Chem; 2017 Jun; 38(15):1114-1124. PubMed ID: 27862047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Information-driven modeling of large macromolecular assemblies using NMR data.
    van Ingen H; Bonvin AM
    J Magn Reson; 2014 Apr; 241():103-14. PubMed ID: 24656083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wordom update 2: A user-friendly program for the analysis of molecular structures and conformational ensembles.
    Felline A; Conti S; Seeber M; Cecchini M; Fanelli F
    Comput Struct Biotechnol J; 2023; 21():1390-1402. PubMed ID: 36817953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MPEXS-DNA, a new GPU-based Monte Carlo simulator for track structures and radiation chemistry at subcellular scale.
    Okada S; Murakami K; Incerti S; Amako K; Sasaki T
    Med Phys; 2019 Mar; 46(3):1483-1500. PubMed ID: 30593679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of Emerging Energy-Efficient Heterogeneous Computing Platforms for Biomolecular and Cellular Simulation Workloads.
    Stone JE; Hallock MJ; Phillips JC; Peterson JR; Luthey-Schulten Z; Schulten K
    IEEE Int Symp Parallel Distrib Process Workshops Phd Forum; 2016 May; 2016():89-100. PubMed ID: 27516922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNA Modeling with the Computational Energy Landscape Framework.
    Röder K; Pasquali S
    Methods Mol Biol; 2021; 2323():49-66. PubMed ID: 34086273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complex molecular assemblies at hand via interactive simulations.
    Delalande O; Férey N; Grasseau G; Baaden M
    J Comput Chem; 2009 Nov; 30(15):2375-87. PubMed ID: 19353597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Current and emerging opportunities for molecular simulations in structure-based drug design.
    Michel J
    Phys Chem Chem Phys; 2014 Mar; 16(10):4465-77. PubMed ID: 24469595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.