These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 35245737)

  • 21. Current developments in and importance of high-performance computing in drug discovery.
    Pitera JW
    Curr Opin Drug Discov Devel; 2009 May; 12(3):388-96. PubMed ID: 19396740
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Computational modeling of protein assemblies.
    Soni N; Madhusudhan MS
    Curr Opin Struct Biol; 2017 Jun; 44():179-189. PubMed ID: 28505542
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Polarizable Force Fields for Biomolecular Simulations: Recent Advances and Applications.
    Jing Z; Liu C; Cheng SY; Qi R; Walker BD; Piquemal JP; Ren P
    Annu Rev Biophys; 2019 May; 48():371-394. PubMed ID: 30916997
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Coarse-grain simulations on NMR conformational ensembles highlight functional residues in proteins.
    Sacquin-Mora S
    J R Soc Interface; 2019 Jul; 16(156):20190075. PubMed ID: 31288649
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Large-Scale Molecular Dynamics Simulations of Cellular Compartments.
    Wilson E; Vant J; Layton J; Boyd R; Lee H; Turilli M; Hernández B; Wilkinson S; Jha S; Gupta C; Sarkar D; Singharoy A
    Methods Mol Biol; 2021; 2302():335-356. PubMed ID: 33877636
    [TBL] [Abstract][Full Text] [Related]  

  • 26. AI Meets Exascale Computing: Advancing Cancer Research With Large-Scale High Performance Computing.
    Bhattacharya T; Brettin T; Doroshow JH; Evrard YA; Greenspan EJ; Gryshuk AL; Hoang TT; Lauzon CBV; Nissley D; Penberthy L; Stahlberg E; Stevens R; Streitz F; Tourassi G; Xia F; Zaki G
    Front Oncol; 2019; 9():984. PubMed ID: 31632915
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Google-Accelerated Biomolecular Simulations.
    Kohlhoff KJ
    Methods Mol Biol; 2019; 2022():291-309. PubMed ID: 31396908
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Overcoming the inadequacies or limitations of experimental structures as drug targets by using computational modeling tools and molecular dynamics simulations.
    Marco E; Gago F
    ChemMedChem; 2007 Oct; 2(10):1388-401. PubMed ID: 17806089
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Coarse-graining methods for computational biology.
    Saunders MG; Voth GA
    Annu Rev Biophys; 2013; 42():73-93. PubMed ID: 23451897
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multiscale methods for macromolecular simulations.
    Sherwood P; Brooks BR; Sansom MS
    Curr Opin Struct Biol; 2008 Oct; 18(5):630-40. PubMed ID: 18721882
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Elastic network models for understanding biomolecular machinery: from enzymes to supramolecular assemblies.
    Chennubhotla C; Rader AJ; Yang LW; Bahar I
    Phys Biol; 2005 Nov; 2(4):S173-80. PubMed ID: 16280623
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A biomolecular computing method based on Rho family GTPases.
    Liu JQ; Shimohara K
    IEEE Trans Nanobioscience; 2003 Jun; 2(2):58-62. PubMed ID: 15382659
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mining, modeling, and evaluation of subnetworks from large biomolecular networks and its comparison study.
    Hu X; Ng M; Wu FX; Sokhansanj BA
    IEEE Trans Inf Technol Biomed; 2009 Mar; 13(2):184-94. PubMed ID: 19272861
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electron-correlated fragment-molecular-orbital calculations for biomolecular and nano systems.
    Tanaka S; Mochizuki Y; Komeiji Y; Okiyama Y; Fukuzawa K
    Phys Chem Chem Phys; 2014 Jun; 16(22):10310-44. PubMed ID: 24740821
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ensembler: Enabling High-Throughput Molecular Simulations at the Superfamily Scale.
    Parton DL; Grinaway PB; Hanson SM; Beauchamp KA; Chodera JD
    PLoS Comput Biol; 2016 Jun; 12(6):e1004728. PubMed ID: 27337644
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Advances in integrative modeling of biomolecular complexes.
    Karaca E; Bonvin AM
    Methods; 2013 Mar; 59(3):372-81. PubMed ID: 23267861
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Preparing sparse solvers for exascale computing.
    Anzt H; Boman E; Falgout R; Ghysels P; Heroux M; Li X; Curfman McInnes L; Tran Mills R; Rajamanickam S; Rupp K; Smith B; Yamazaki I; Meier Yang U
    Philos Trans A Math Phys Eng Sci; 2020 Mar; 378(2166):20190053. PubMed ID: 31955673
    [TBL] [Abstract][Full Text] [Related]  

  • 39. From digital hype to analogue reality: Universal simulation beyond the quantum and exascale eras.
    Coveney PV; Highfield RR
    J Comput Sci; 2020 Oct; 46():101093. PubMed ID: 33312270
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Theoretical approaches for dynamical ordering of biomolecular systems.
    Okumura H; Higashi M; Yoshida Y; Sato H; Akiyama R
    Biochim Biophys Acta Gen Subj; 2018 Feb; 1862(2):212-228. PubMed ID: 28988931
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.