These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 35246179)

  • 1. Estimation of plant height and yield based on UAV imagery in faba bean (Vicia faba L.).
    Ji Y; Chen Z; Cheng Q; Liu R; Li M; Yan X; Li G; Wang D; Fu L; Ma Y; Jin X; Zong X; Yang T
    Plant Methods; 2022 Mar; 18(1):26. PubMed ID: 35246179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Faba bean and pea harvest index estimations using aerial-based multimodal data and machine learning algorithms.
    Ji Y; Liu Z; Cui Y; Liu R; Chen Z; Zong X; Yang T
    Plant Physiol; 2024 Feb; 194(3):1512-1526. PubMed ID: 37935623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using Unmanned Aerial Vehicle-Based Multispectral Image Data to Monitor the Growth of Intercropping Crops in Tea Plantation.
    Shi Y; Gao Y; Wang Y; Luo D; Chen S; Ding Z; Fan K
    Front Plant Sci; 2022; 13():820585. PubMed ID: 35283919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Above-Ground Biomass Estimation in Oats Using UAV Remote Sensing and Machine Learning.
    Sharma P; Leigh L; Chang J; Maimaitijiang M; Caffé M
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine learning for high-throughput field phenotyping and image processing provides insight into the association of above and below-ground traits in cassava (
    Selvaraj MG; Valderrama M; Guzman D; Valencia M; Ruiz H; Acharjee A
    Plant Methods; 2020; 16():87. PubMed ID: 32549903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ramie Yield Estimation Based on UAV RGB Images.
    Fu H; Wang C; Cui G; She W; Zhao L
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33477949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining spectral and texture feature of UAV image with plant height to improve LAI estimation of winter wheat at jointing stage.
    Zou M; Liu Y; Fu M; Li C; Zhou Z; Meng H; Xing E; Ren Y
    Front Plant Sci; 2023; 14():1272049. PubMed ID: 38235191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel SNP markers for flowering and seed quality traits in faba bean (
    Ohm H; Åstrand J; Ceplitis A; Bengtsson D; Hammenhag C; Chawade A; Grimberg Å
    Front Plant Sci; 2024; 15():1348014. PubMed ID: 38510437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved estimation of aboveground biomass in wheat from RGB imagery and point cloud data acquired with a low-cost unmanned aerial vehicle system.
    Lu N; Zhou J; Han Z; Li D; Cao Q; Yao X; Tian Y; Zhu Y; Cao W; Cheng T
    Plant Methods; 2019; 15():17. PubMed ID: 30828356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High Throughput Field Phenotyping for Plant Height Using UAV-Based RGB Imagery in Wheat Breeding Lines: Feasibility and Validation.
    Volpato L; Pinto F; González-Pérez L; Thompson IG; Borém A; Reynolds M; Gérard B; Molero G; Rodrigues FA
    Front Plant Sci; 2021; 12():591587. PubMed ID: 33664755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of potato above-ground biomass based on unmanned aerial vehicle red-green-blue images with different texture features and crop height.
    Liu Y; Feng H; Yue J; Jin X; Li Z; Yang G
    Front Plant Sci; 2022; 13():938216. PubMed ID: 36092445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic monitoring of biomass of rice under different nitrogen treatments using a lightweight UAV with dual image-frame snapshot cameras.
    Cen H; Wan L; Zhu J; Li Y; Li X; Zhu Y; Weng H; Wu W; Yin W; Xu C; Bao Y; Feng L; Shou J; He Y
    Plant Methods; 2019; 15():32. PubMed ID: 30972143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of UAV Multisensor Data and Ensemble Approach for High-Throughput Estimation of Maize Phenotyping Traits.
    Shu M; Fei S; Zhang B; Yang X; Guo Y; Li B; Ma Y
    Plant Phenomics; 2022; 2022():9802585. PubMed ID: 36158531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of cotton canopy parameters based on unmanned aerial vehicle (UAV) oblique photography.
    Wu J; Wen S; Lan Y; Yin X; Zhang J; Ge Y
    Plant Methods; 2022 Dec; 18(1):129. PubMed ID: 36482426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of the Yield and Plant Height of Winter Wheat Using UAV-Based Hyperspectral Images.
    Tao H; Feng H; Xu L; Miao M; Yang G; Yang X; Fan L
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32102358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide association study for yield-related traits in faba bean (
    Gutierrez N; Pégard M; Solis I; Sokolovic D; Lloyd D; Howarth C; Torres AM
    Front Plant Sci; 2024; 15():1328690. PubMed ID: 38545396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scaling Effects on Chlorophyll Content Estimations with RGB Camera Mounted on a UAV Platform Using Machine-Learning Methods.
    Guo Y; Yin G; Sun H; Wang H; Chen S; Senthilnath J; Wang J; Fu Y
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32916808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SSR analysis of genetic diversity and structure of the germplasm of faba bean (Vicia faba L.).
    El-Esawi MA
    C R Biol; 2017; 340(11-12):474-480. PubMed ID: 29107611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Planting geometry to optimize growth and productivity in faba bean (Vicia faba L.) and soil fertility.
    Singh AK; Bhatt BP; Sundaram PK; Gupta AK; Singh D
    J Environ Biol; 2013 Jan; 34(1):117-22. PubMed ID: 24006817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. UAV-based multi-sensor data fusion and machine learning algorithm for yield prediction in wheat.
    Fei S; Hassan MA; Xiao Y; Su X; Chen Z; Cheng Q; Duan F; Chen R; Ma Y
    Precis Agric; 2023; 24(1):187-212. PubMed ID: 35967193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.