These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 35246519)

  • 21. Quantum computational advantage with a programmable photonic processor.
    Madsen LS; Laudenbach F; Askarani MF; Rortais F; Vincent T; Bulmer JFF; Miatto FM; Neuhaus L; Helt LG; Collins MJ; Lita AE; Gerrits T; Nam SW; Vaidya VD; Menotti M; Dhand I; Vernon Z; Quesada N; Lavoie J
    Nature; 2022 Jun; 606(7912):75-81. PubMed ID: 35650354
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Generation of genuine entanglement up to 51 superconducting qubits.
    Cao S; Wu B; Chen F; Gong M; Wu Y; Ye Y; Zha C; Qian H; Ying C; Guo S; Zhu Q; Huang HL; Zhao Y; Li S; Wang S; Yu J; Fan D; Wu D; Su H; Deng H; Rong H; Li Y; Zhang K; Chung TH; Liang F; Lin J; Xu Y; Sun L; Guo C; Li N; Huo YH; Peng CZ; Lu CY; Yuan X; Zhu X; Pan JW
    Nature; 2023 Jul; 619(7971):738-742. PubMed ID: 37438533
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Photonic ququart logic assisted by the cavity-QED system.
    Luo MX; Deng Y; Li HR; Ma SY
    Sci Rep; 2015 Aug; 5():13255. PubMed ID: 26272869
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cyclic permutations for qudits in d dimensions.
    Isdrailă TA; Kusko C; Ionicioiu R
    Sci Rep; 2019 Apr; 9(1):6337. PubMed ID: 31004090
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Logical measurement-based quantum computation in circuit-QED.
    Joo J; Lee CW; Kono S; Kim J
    Sci Rep; 2019 Nov; 9(1):16592. PubMed ID: 31719588
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Silicon quantum processor with robust long-distance qubit couplings.
    Tosi G; Mohiyaddin FA; Schmitt V; Tenberg S; Rahman R; Klimeck G; Morello A
    Nat Commun; 2017 Sep; 8(1):450. PubMed ID: 28878207
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantum supremacy using a programmable superconducting processor.
    Arute F; Arya K; Babbush R; Bacon D; Bardin JC; Barends R; Biswas R; Boixo S; Brandao FGSL; Buell DA; Burkett B; Chen Y; Chen Z; Chiaro B; Collins R; Courtney W; Dunsworth A; Farhi E; Foxen B; Fowler A; Gidney C; Giustina M; Graff R; Guerin K; Habegger S; Harrigan MP; Hartmann MJ; Ho A; Hoffmann M; Huang T; Humble TS; Isakov SV; Jeffrey E; Jiang Z; Kafri D; Kechedzhi K; Kelly J; Klimov PV; Knysh S; Korotkov A; Kostritsa F; Landhuis D; Lindmark M; Lucero E; Lyakh D; Mandrà S; McClean JR; McEwen M; Megrant A; Mi X; Michielsen K; Mohseni M; Mutus J; Naaman O; Neeley M; Neill C; Niu MY; Ostby E; Petukhov A; Platt JC; Quintana C; Rieffel EG; Roushan P; Rubin NC; Sank D; Satzinger KJ; Smelyanskiy V; Sung KJ; Trevithick MD; Vainsencher A; Villalonga B; White T; Yao ZJ; Yeh P; Zalcman A; Neven H; Martinis JM
    Nature; 2019 Oct; 574(7779):505-510. PubMed ID: 31645734
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Generalized Toffoli Gate Decomposition Using Ququints: Towards Realizing Grover's Algorithm with Qudits.
    Nikolaeva AS; Kiktenko EO; Fedorov AK
    Entropy (Basel); 2023 Feb; 25(2):. PubMed ID: 36832752
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Computational speed-up with a single qudit.
    Gedik Z; Silva IA; Çakmak B; Karpat G; Vidoto EL; Soares-Pinto DO; deAzevedo ER; Fanchini FF
    Sci Rep; 2015 Oct; 5():14671. PubMed ID: 26446614
    [TBL] [Abstract][Full Text] [Related]  

  • 30. "Spectral implementation" for creating a labeled pseudo-pure state and the Bernstein-Vazirani algorithm in a four-qubit nuclear magnetic resonance quantum processor.
    Peng X; Zhu X; Fang X; Feng M; Liu M; Gao K
    J Chem Phys; 2004 Feb; 120(8):3579-85. PubMed ID: 15268519
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Vibrational molecular quantum computing: basis set independence and theoretical realization of the Deutsch-Jozsa algorithm.
    Tesch CM; de Vivie-Riedle R
    J Chem Phys; 2004 Dec; 121(24):12158-68. PubMed ID: 15606234
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Manipulating spatial qudit states with programmable optical devices.
    Lima G; Vargas A; Neves L; Guzmán R; Saavedra C
    Opt Express; 2009 Jun; 17(13):10688-96. PubMed ID: 19550465
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Operation of a silicon quantum processor unit cell above one kelvin.
    Yang CH; Leon RCC; Hwang JCC; Saraiva A; Tanttu T; Huang W; Camirand Lemyre J; Chan KW; Tan KY; Hudson FE; Itoh KM; Morello A; Pioro-Ladrière M; Laucht A; Dzurak AS
    Nature; 2020 Apr; 580(7803):350-354. PubMed ID: 32296190
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Atomic Engineering of Molecular Qubits for High-Speed, High-Fidelity Single Qubit Gates.
    Jones MT; Monir MS; Krauth FN; Macha P; Hsueh YL; Worrall A; Keizer JG; Kranz L; Gorman SK; Chung Y; Rahman R; Simmons MY
    ACS Nano; 2023 Nov; 17(22):22601-22610. PubMed ID: 37930801
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Superconducting quantum circuits at the surface code threshold for fault tolerance.
    Barends R; Kelly J; Megrant A; Veitia A; Sank D; Jeffrey E; White TC; Mutus J; Fowler AG; Campbell B; Chen Y; Chen Z; Chiaro B; Dunsworth A; Neill C; O'Malley P; Roushan P; Vainsencher A; Wenner J; Korotkov AN; Cleland AN; Martinis JM
    Nature; 2014 Apr; 508(7497):500-3. PubMed ID: 24759412
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Coherent Manipulation of a Molecular Ln-Based Nuclear Qudit Coupled to an Electron Qubit.
    Hussain R; Allodi G; Chiesa A; Garlatti E; Mitcov D; Konstantatos A; Pedersen KS; De Renzi R; Piligkos S; Carretta S
    J Am Chem Soc; 2018 Aug; 140(31):9814-9818. PubMed ID: 30040890
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fidelity benchmarks for two-qubit gates in silicon.
    Huang W; Yang CH; Chan KW; Tanttu T; Hensen B; Leon RCC; Fogarty MA; Hwang JCC; Hudson FE; Itoh KM; Morello A; Laucht A; Dzurak AS
    Nature; 2019 May; 569(7757):532-536. PubMed ID: 31086337
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Universal control of a six-qubit quantum processor in silicon.
    Philips SGJ; Mądzik MT; Amitonov SV; de Snoo SL; Russ M; Kalhor N; Volk C; Lawrie WIL; Brousse D; Tryputen L; Wuetz BP; Sammak A; Veldhorst M; Scappucci G; Vandersypen LMK
    Nature; 2022 Sep; 609(7929):919-924. PubMed ID: 36171383
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A four-qubit germanium quantum processor.
    Hendrickx NW; Lawrie WIL; Russ M; van Riggelen F; de Snoo SL; Schouten RN; Sammak A; Scappucci G; Veldhorst M
    Nature; 2021 Mar; 591(7851):580-585. PubMed ID: 33762771
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fiber-optics implementation of the Deutsch-Jozsa and Bernstein-Vazirani quantum algorithms with three qubits.
    Brainis E; Lamoureux LP; Cerf NJ; Emplit P; Haelterman M; Massar S
    Phys Rev Lett; 2003 Apr; 90(15):157902. PubMed ID: 12732071
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.