BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 35246559)

  • 21. Identification of adverse drug reactions in geriatric inpatients using a computerised drug database.
    Egger T; Dormann H; Ahne G; Runge U; Neubert A; Criegee-Rieck M; Gassmann KG; Brune K
    Drugs Aging; 2003; 20(10):769-76. PubMed ID: 12875612
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A curated and standardized adverse drug event resource to accelerate drug safety research.
    Banda JM; Evans L; Vanguri RS; Tatonetti NP; Ryan PB; Shah NH
    Sci Data; 2016 May; 3():160026. PubMed ID: 27193236
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Data mining for signal detection of adverse event safety data.
    Chen HC; Tsong Y; Chen JJ
    J Biopharm Stat; 2013; 23(1):146-60. PubMed ID: 23331228
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An experimental investigation of masking in the US FDA adverse event reporting system database.
    Wang HW; Hochberg AM; Pearson RK; Hauben M
    Drug Saf; 2010 Dec; 33(12):1117-33. PubMed ID: 21077702
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Postmarketing safety surveillance : where does signal detection using electronic healthcare records fit into the big picture?
    Coloma PM; Trifirò G; Patadia V; Sturkenboom M
    Drug Saf; 2013 Mar; 36(3):183-97. PubMed ID: 23377696
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Feasibility of Prioritizing Drug-Drug-Event Associations Found in Electronic Health Records.
    Banda JM; Callahan A; Winnenburg R; Strasberg HR; Cami A; Reis BY; Vilar S; Hripcsak G; Dumontier M; Shah NH
    Drug Saf; 2016 Jan; 39(1):45-57. PubMed ID: 26446143
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mining multi-item drug adverse effect associations in spontaneous reporting systems.
    Harpaz R; Chase HS; Friedman C
    BMC Bioinformatics; 2010 Oct; 11 Suppl 9(Suppl 9):S7. PubMed ID: 21044365
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Semi-Supervised Learning Algorithm for Identifying High-Priority Drug-Drug Interactions Through Adverse Event Reports.
    Liu N; Chen CB; Kumara S
    IEEE J Biomed Health Inform; 2020 Jan; 24(1):57-68. PubMed ID: 31395567
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A pharmacovigilance study of pharmacokinetic drug interactions using a translational informatics discovery approach.
    Wang L; Shendre A; Chiang CW; Cao W; Ning X; Zhang P; Zhang P; Li L
    Br J Clin Pharmacol; 2022 Feb; 88(4):1471-1481. PubMed ID: 33543792
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of competition bias in safety signal generation: analysis of a research database of spontaneous reports in France.
    Pariente A; Avillach P; Salvo F; Thiessard F; Miremont-Salamé G; Fourrier-Reglat A; Haramburu F; Bégaud B; Moore N;
    Drug Saf; 2012 Oct; 35(10):855-64. PubMed ID: 22967190
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mixture drug-count response model for the high-dimensional drug combinatory effect on myopathy.
    Wang X; Zhang P; Chiang CW; Wu H; Shen L; Ning X; Zeng D; Wang L; Quinney SK; Feng W; Li L
    Stat Med; 2018 Feb; 37(4):673-686. PubMed ID: 29171062
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Drug drug interaction extraction from the literature using a recursive neural network.
    Lim S; Lee K; Kang J
    PLoS One; 2018; 13(1):e0190926. PubMed ID: 29373599
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reporting patterns indicative of adverse drug interactions: a systematic evaluation in VigiBase.
    Strandell J; Caster O; Bate A; Norén N; Edwards IR
    Drug Saf; 2011 Mar; 34(3):253-66. PubMed ID: 21332249
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Aggregation and analysis of indication-symptom relationships for drugs approved in the USA.
    Punyala A; Lankapalli R; Hindman D; Racz R
    Eur J Clin Pharmacol; 2020 Sep; 76(9):1291-1299. PubMed ID: 32495081
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Adverse drug reactions caused by drug-drug interactions in cardiovascular disease patients: introduction of a simple prediction tool using electronic screening database items.
    Kovačević M; Vezmar Kovačević S; Radovanović S; Stevanović P; Miljković B
    Curr Med Res Opin; 2019 Nov; 35(11):1873-1883. PubMed ID: 31328967
    [No Abstract]   [Full Text] [Related]  

  • 36. Triptans and serious adverse vascular events: data mining of the FDA Adverse Event Reporting System database.
    Roberto G; Piccinni C; D'Alessandro R; Poluzzi E
    Cephalalgia; 2014 Jan; 34(1):5-13. PubMed ID: 23921799
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Standardizing drug adverse event reporting data.
    Wang L; Jiang G; Li D; Liu H
    Stud Health Technol Inform; 2013; 192():1101. PubMed ID: 23920875
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Commonality of drug-associated adverse events detected by 4 commonly used data mining algorithms.
    Sakaeda T; Kadoyama K; Minami K; Okuno Y
    Int J Med Sci; 2014; 11(5):461-5. PubMed ID: 24688309
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A time-indexed reference standard of adverse drug reactions.
    Harpaz R; Odgers D; Gaskin G; DuMouchel W; Winnenburg R; Bodenreider O; Ripple A; Szarfman A; Sorbello A; Horvitz E; White RW; Shah NH
    Sci Data; 2014 Nov; 1():140043. PubMed ID: 25632348
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An evaluation of three signal-detection algorithms using a highly inclusive reference event database.
    Hochberg AM; Hauben M; Pearson RK; O'Hara DJ; Reisinger SJ; Goldsmith DI; Gould AL; Madigan D
    Drug Saf; 2009; 32(6):509-25. PubMed ID: 19459718
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.