These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 35246559)

  • 61. Potential use of data-mining algorithms for the detection of 'surprise' adverse drug reactions.
    Hauben M; Horn S; Reich L
    Drug Saf; 2007; 30(2):143-55. PubMed ID: 17253879
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Methods and pitfalls in searching drug safety databases utilising the Medical Dictionary for Regulatory Activities (MedDRA).
    Brown EG
    Drug Saf; 2003; 26(3):145-58. PubMed ID: 12580645
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Can Disproportionality Analysis of Post-marketing Case Reports be Used for Comparison of Drug Safety Profiles?
    Michel C; Scosyrev E; Petrin M; Schmouder R
    Clin Drug Investig; 2017 May; 37(5):415-422. PubMed ID: 28224371
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Influence of the MedDRA hierarchy on pharmacovigilance data mining results.
    Pearson RK; Hauben M; Goldsmith DI; Gould AL; Madigan D; O'Hara DJ; Reisinger SJ; Hochberg AM
    Int J Med Inform; 2009 Dec; 78(12):e97-e103. PubMed ID: 19230751
    [TBL] [Abstract][Full Text] [Related]  

  • 65. EU-ADR healthcare database network vs. spontaneous reporting system database: preliminary comparison of signal detection.
    Trifirò G; Patadia V; Schuemie MJ; Coloma PM; Gini R; Herings R; Hippisley-Cox J; Mazzaglia G; Giaquinto C; Scotti L; Pedersen L; Avillach P; Sturkenboom MC; van der Lei J; Eu-Adr Group
    Stud Health Technol Inform; 2011; 166():25-30. PubMed ID: 21685607
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Real-world data-based adverse drug reactions detection from the Korea Adverse Event Reporting System databases with electronic health records-based detection algorithm.
    Shin H; Cha J; Lee Y; Kim JY; Lee S
    Health Informatics J; 2021; 27(3):14604582211033014. PubMed ID: 34289723
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Drug-drug interactions in pediatric oncology patients.
    Balk TE; van der Sijs IH; van Gelder T; Janssen JJB; van der Sluis IM; van Leeuwen RWF; Engels FK
    Pediatr Blood Cancer; 2017 Jul; 64(7):. PubMed ID: 28205376
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Comparison of two databases to detect potential drug-drug interactions between prescriptions of HIV/AIDS patients in critical care.
    Ramos GV; Guaraldo L; Japiassú AM; Bozza FA
    J Clin Pharm Ther; 2015 Feb; 40(1):63-7. PubMed ID: 25329640
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Review of FDA Amendments Act Section 921 Experience in Posting Data-mining Results from the FAERS Database.
    Beninger P; Murray M
    Clin Ther; 2021 Feb; 43(2):380-395. PubMed ID: 33504449
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Detection algorithms and attentive points of safety signal using spontaneous reporting systems as a clinical data source.
    Noguchi Y; Tachi T; Teramachi H
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34453158
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A retrospective evaluation of a data mining approach to aid finding new adverse drug reaction signals in the WHO international database.
    Lindquist M; Ståhl M; Bate A; Edwards IR; Meyboom RH
    Drug Saf; 2000 Dec; 23(6):533-42. PubMed ID: 11144660
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Risk Factor Considerations in Statistical Signal Detection: Using Subgroup Disproportionality to Uncover Risk Groups for Adverse Drug Reactions in VigiBase.
    Sandberg L; Taavola H; Aoki Y; Chandler R; Norén GN
    Drug Saf; 2020 Oct; 43(10):999-1009. PubMed ID: 32564242
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Drug-drug interactions in inpatient and outpatient settings in Iran: a systematic review of the literature.
    Nabovati E; Vakili-Arki H; Taherzadeh Z; Hasibian MR; Abu-Hanna A; Eslami S
    Daru; 2014 Jun; 22(1):52. PubMed ID: 24965959
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Artificial Intelligence and Data Mining for the Pharmacovigilance of Drug-Drug Interactions.
    Hauben M
    Clin Ther; 2023 Feb; 45(2):117-133. PubMed ID: 36732152
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Detecting signals of drug-drug interactions in a spontaneous reports database.
    Thakrar BT; Grundschober SB; Doessegger L
    Br J Clin Pharmacol; 2007 Oct; 64(4):489-95. PubMed ID: 17506784
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Mapping the safety profile of biologicals: a disproportionality analysis using the WHO adverse drug reaction database, VigiBase.
    Giezen TJ; Mantel-Teeuwisse AK; Meyboom RH; Straus SM; Leufkens HG; Egberts TC
    Drug Saf; 2010 Oct; 33(10):865-78. PubMed ID: 20812771
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Pharmacological prioritisation of signals of disproportionate reporting: proposal of an algorithm and pilot evaluation.
    Salvo F; Raschi E; Moretti U; Chiarolanza A; Fourrier-Réglat A; Moore N; Sturkemboom M; De Ponti F; Poluzzi E; Pariente A
    Eur J Clin Pharmacol; 2014 May; 70(5):617-25. PubMed ID: 24595599
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Epidemiology and characteristics of adverse drug reactions caused by drug-drug interactions.
    Magro L; Moretti U; Leone R
    Expert Opin Drug Saf; 2012 Jan; 11(1):83-94. PubMed ID: 22022824
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Using SNOMED CT in combination with MedDRA for reporting signal detection and adverse drug reactions reporting.
    Bodenreider O
    AMIA Annu Symp Proc; 2009 Nov; 2009():45-9. PubMed ID: 20351820
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Association rule mining in the US Vaccine Adverse Event Reporting System (VAERS).
    Wei L; Scott J
    Pharmacoepidemiol Drug Saf; 2015 Sep; 24(9):922-33. PubMed ID: 26045284
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.