BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 35246690)

  • 1. Autophosphorylation Inhibits RcCDPK1, a Dual-Specificity Kinase that Phosphorylates Bacterial-Type Phosphoenolpyruvate Carboxylase in Castor Oil Seeds.
    Kilburn R; Gerdis SA; She YM; Snedden WA; Plaxton WC
    Plant Cell Physiol; 2022 May; 63(5):683-698. PubMed ID: 35246690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulatory Phosphorylation of Bacterial-Type PEP Carboxylase by the Ca
    Ying S; Hill AT; Pyc M; Anderson EM; Snedden WA; Mullen RT; She YM; Plaxton WC
    Plant Physiol; 2017 Jun; 174(2):1012-1027. PubMed ID: 28363991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphorylation of bacterial-type phosphoenolpyruvate carboxylase by a Ca2+-dependent protein kinase suggests a link between Ca2+ signalling and anaplerotic pathway control in developing castor oil seeds.
    Hill AT; Ying S; Plaxton WC
    Biochem J; 2014 Feb; 458(1):109-18. PubMed ID: 24266766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorylation of bacterial-type phosphoenolpyruvate carboxylase at Ser425 provides a further tier of enzyme control in developing castor oil seeds.
    O'Leary B; Rao SK; Plaxton WC
    Biochem J; 2011 Jan; 433(1):65-74. PubMed ID: 20950272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The bacterial-type phosphoenolpyruvate carboxylase isozyme from developing castor oil seeds is subject to in vivo regulatory phosphorylation at serine-451.
    Dalziel KJ; O'Leary B; Brikis C; Rao SK; She YM; Cyr T; Plaxton WC
    FEBS Lett; 2012 Apr; 586(7):1049-54. PubMed ID: 22569262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substrate profiling of the Arabidopsis Ca
    Kilburn R; Fedosejevs ET; Mehta D; Soleimani F; Ghahremani M; Monaghan J; Thelen JJ; Uhrig RG; Snedden WA; Plaxton WC
    Plant Sci; 2023 Jun; 331():111675. PubMed ID: 36931565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tissue-specific expression and post-translational modifications of plant- and bacterial-type phosphoenolpyruvate carboxylase isozymes of the castor oil plant, Ricinus communis L.
    O'Leary B; Fedosejevs ET; Hill AT; Bettridge J; Park J; Rao SK; Leach CA; Plaxton WC
    J Exp Bot; 2011 Nov; 62(15):5485-95. PubMed ID: 21841182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The calcium-dependent protein kinase RcCDPK2 phosphorylates sucrose synthase at Ser11 in developing castor oil seeds.
    Fedosejevs ET; Gerdis SA; Ying S; Pyc M; Anderson EM; Snedden WA; Mullen RT; She YM; Plaxton WC
    Biochem J; 2016 Oct; 473(20):3667-3682. PubMed ID: 27512054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacterial- and plant-type phosphoenolpyruvate carboxylase isozymes from developing castor oil seeds interact in vivo and associate with the surface of mitochondria.
    Park J; Khuu N; Howard AS; Mullen RT; Plaxton WC
    Plant J; 2012 Jul; 71(2):251-62. PubMed ID: 22404138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coimmunopurification of phosphorylated bacterial- and plant-type phosphoenolpyruvate carboxylases with the plastidial pyruvate dehydrogenase complex from developing castor oil seeds.
    Uhrig RG; O'Leary B; Spang HE; MacDonald JA; She YM; Plaxton WC
    Plant Physiol; 2008 Mar; 146(3):1346-57. PubMed ID: 18184736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacterial- and plant-type phosphoenolpyruvate carboxylase polypeptides interact in the hetero-oligomeric Class-2 PEPC complex of developing castor oil seeds.
    Gennidakis S; Rao S; Greenham K; Uhrig RG; O'Leary B; Snedden WA; Lu C; Plaxton WC
    Plant J; 2007 Dec; 52(5):839-49. PubMed ID: 17894783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulatory monoubiquitination of phosphoenolpyruvate carboxylase in germinating castor oil seeds.
    Uhrig RG; She YM; Leach CA; Plaxton WC
    J Biol Chem; 2008 Oct; 283(44):29650-7. PubMed ID: 18728004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcript profiling indicates a widespread role for bacterial-type phosphoenolpyruvate carboxylase in malate-accumulating sink tissues.
    Ting MKY; She YM; Plaxton WC
    J Exp Bot; 2017 Dec; 68(21-22):5857-5869. PubMed ID: 29240945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacterial-type phosphoenolpyruvate carboxylase (PEPC) functions as a catalytic and regulatory subunit of the novel class-2 PEPC complex of vascular plants.
    O'Leary B; Rao SK; Kim J; Plaxton WC
    J Biol Chem; 2009 Sep; 284(37):24797-805. PubMed ID: 19605358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The remarkable diversity of plant PEPC (phosphoenolpyruvate carboxylase): recent insights into the physiological functions and post-translational controls of non-photosynthetic PEPCs.
    O'Leary B; Park J; Plaxton WC
    Biochem J; 2011 May; 436(1):15-34. PubMed ID: 21524275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo regulatory phosphorylation of novel phosphoenolpyruvate carboxylase isoforms in endosperm of developing castor oil seeds.
    Tripodi KE; Turner WL; Gennidakis S; Plaxton WC
    Plant Physiol; 2005 Oct; 139(2):969-78. PubMed ID: 16169958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of bacterial-type phosphoenolpyruvate carboxylase expressed in male gametophyte of higher plants.
    Igawa T; Fujiwara M; Tanaka I; Fukao Y; Yanagawa Y
    BMC Plant Biol; 2010 Sep; 10():200. PubMed ID: 20836890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A conserved 19-amino acid synthetic peptide from the carboxy terminus of phosphoenolpyruvate carboxylase inhibits the in vitro phosphorylation of the enzyme by the calcium-independent phosphoenolpyruvate carboxylase kinase.
    Alvarez R; García-Mauriño S; Feria AB; Vidal J; Echevarría C
    Plant Physiol; 2003 Jun; 132(2):1097-106. PubMed ID: 12805637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of phosphoenolpyruvate carboxylase phosphorylation by metabolites and abscisic acid during the development and germination of barley seeds.
    Feria AB; Alvarez R; Cochereau L; Vidal J; García-Mauriño S; Echevarría C
    Plant Physiol; 2008 Oct; 148(2):761-74. PubMed ID: 18753284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro proteolysis of phosphoenolpyruvate carboxylase from developing castor oil seeds by an endogenous thiol endopeptidase.
    Crowley V; Gennidakis S; Plaxton WC
    Plant Cell Physiol; 2005 Nov; 46(11):1855-62. PubMed ID: 16188875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.