These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 35246701)
1. iTTCA-MFF: identifying tumor T cell antigens based on multiple feature fusion. Zou H; Yang F; Yin Z Immunogenetics; 2022 Oct; 74(5):447-454. PubMed ID: 35246701 [TBL] [Abstract][Full Text] [Related]
2. Integrating multiple sequence features for identifying anticancer peptides. Zou H; Yang F; Yin Z Comput Biol Chem; 2022 Aug; 99():107711. PubMed ID: 35667299 [TBL] [Abstract][Full Text] [Related]
3. Identification of tumor homing peptides by utilizing hybrid feature representation. Zou H; Yang F; Yin Z J Biomol Struct Dyn; 2023 May; 41(8):3405-3412. PubMed ID: 35262448 [TBL] [Abstract][Full Text] [Related]
4. m7G-DPP: Identifying N7-methylguanosine sites based on dinucleotide physicochemical properties of RNA. Zou H; Yin Z Biophys Chem; 2021 Dec; 279():106697. PubMed ID: 34628276 [TBL] [Abstract][Full Text] [Related]
5. iTTCA-MVL: A multi-view learning model based on physicochemical information and sequence statistical information for tumor T cell antigens identification. Zhao S; Huang S; Niu M; Xu L; Xu L Comput Biol Med; 2024 Mar; 170():107941. PubMed ID: 38217976 [TBL] [Abstract][Full Text] [Related]
6. StackTTCA: a stacking ensemble learning-based framework for accurate and high-throughput identification of tumor T cell antigens. Charoenkwan P; Schaduangrat N; Shoombuatong W BMC Bioinformatics; 2023 Jul; 24(1):301. PubMed ID: 37507654 [TBL] [Abstract][Full Text] [Related]
7. iAMY-RECMFF: Identifying amyloidgenic peptides by using residue pairwise energy content matrix and features fusion algorithm. Yu Z; Yin Z; Zou H J Bioinform Comput Biol; 2023 Oct; 21(5):2350023. PubMed ID: 37899353 [TBL] [Abstract][Full Text] [Related]
8. iTTCA-Hybrid: Improved and robust identification of tumor T cell antigens by utilizing hybrid feature representation. Charoenkwan P; Nantasenamat C; Hasan MM; Shoombuatong W Anal Biochem; 2020 Jun; 599():113747. PubMed ID: 32333902 [TBL] [Abstract][Full Text] [Related]
9. iTTCA-RF: a random forest predictor for tumor T cell antigens. Jiao S; Zou Q; Guo H; Shi L J Transl Med; 2021 Oct; 19(1):449. PubMed ID: 34706730 [TBL] [Abstract][Full Text] [Related]
10. PSRTTCA: A new approach for improving the prediction and characterization of tumor T cell antigens using propensity score representation learning. Charoenkwan P; Pipattanaboon C; Nantasenamat C; Hasan MM; Moni MA; Lio' P; Shoombuatong W Comput Biol Med; 2023 Jan; 152():106368. PubMed ID: 36481763 [TBL] [Abstract][Full Text] [Related]
11. Integrating temporal and spatial variabilities for identifying ion binding proteins in phage. Zou H; Yu Z; Yin Z J Bioinform Comput Biol; 2023 Jun; 21(3):2350010. PubMed ID: 37325864 [TBL] [Abstract][Full Text] [Related]
12. iRNA5hmC-HOC: High-order correlation information for identifying RNA 5-hydroxymethylcytosine modification. Zou H J Bioinform Comput Biol; 2022 Aug; 20(4):2250017. PubMed ID: 35918795 [TBL] [Abstract][Full Text] [Related]
13. iDPPIV-SI: identifying dipeptidyl peptidase IV inhibitory peptides by using multiple sequence information. Zou H J Biomol Struct Dyn; 2024; 42(4):2144-2152. PubMed ID: 37125813 [TBL] [Abstract][Full Text] [Related]
14. Integrating Low-Order and High-Order Correlation Information for Identifying Phage Virion Proteins. Zou H; Yu W J Comput Biol; 2023 Oct; 30(10):1131-1143. PubMed ID: 37729064 [TBL] [Abstract][Full Text] [Related]
15. iDHS-DT: Identifying DNase I hypersensitive sites by integrating DNA dinucleotide and trinucleotide information. Zou H; Yang F; Yin Z Biophys Chem; 2022 Feb; 281():106717. PubMed ID: 34798459 [TBL] [Abstract][Full Text] [Related]
16. Identifying N7-methylguanosine sites by integrating multiple features. Zou H; Yang F; Yin Z Biopolymers; 2022 Feb; 113(2):e23480. PubMed ID: 34709657 [TBL] [Abstract][Full Text] [Related]
17. Sa-TTCA: An SVM-based approach for tumor T-cell antigen classification using features extracted from biological sequencing and natural language processing. Tran TO; Le NQK Comput Biol Med; 2024 May; 174():108408. PubMed ID: 38636332 [TBL] [Abstract][Full Text] [Related]
18. ENCAP: Computational prediction of tumor T cell antigens with ensemble classifiers and diverse sequence features. Yu JC; Ni K; Chen CT PLoS One; 2024; 19(7):e0307176. PubMed ID: 39024250 [TBL] [Abstract][Full Text] [Related]
19. Computational methods for ubiquitination site prediction using physicochemical properties of protein sequences. Cai B; Jiang X BMC Bioinformatics; 2016 Mar; 17():116. PubMed ID: 26940649 [TBL] [Abstract][Full Text] [Related]
20. SGL-SVM: A novel method for tumor classification via support vector machine with sparse group Lasso. Huo Y; Xin L; Kang C; Wang M; Ma Q; Yu B J Theor Biol; 2020 Feb; 486():110098. PubMed ID: 31786183 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]