These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

422 related articles for article (PubMed ID: 35246886)

  • 1. Direct Ink Writing: A 3D Printing Technology for Diverse Materials.
    Saadi MASR; Maguire A; Pottackal NT; Thakur MSH; Ikram MM; Hart AJ; Ajayan PM; Rahman MM
    Adv Mater; 2022 Jul; 34(28):e2108855. PubMed ID: 35246886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Innovations in hydrogel-based manufacturing: A comprehensive review of direct ink writing technique for biomedical applications.
    Baniasadi H; Abidnejad R; Fazeli M; Lipponen J; Niskanen J; Kontturi E; Seppälä J; Rojas OJ
    Adv Colloid Interface Sci; 2024 Feb; 324():103095. PubMed ID: 38301316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct Ink Writing Technology (3D Printing) of Graphene-Based Ceramic Nanocomposites: A Review.
    Pinargote NWS; Smirnov A; Peretyagin N; Seleznev A; Peretyagin P
    Nanomaterials (Basel); 2020 Jul; 10(7):. PubMed ID: 32630782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rheology and Printability of a Porcelain Clay Paste for DIW 3D Printing of Ceramics with Complex Geometric Structures.
    Wu Y; Lan J; Wu M; Zhou W; Zhou S; Yang H; Zhang M; Li Y
    ACS Omega; 2024 Jun; 9(24):26450-26457. PubMed ID: 38911716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advanced Polymer Designs for Direct-Ink-Write 3D Printing.
    Li L; Lin Q; Tang M; Duncan AJE; Ke C
    Chemistry; 2019 Aug; 25(46):10768-10781. PubMed ID: 31087700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct Ink Writing of Carbon-Doped Polymeric Composite Ink: A Review on Its Requirements and Applications.
    Raj R; Dixit AR
    3D Print Addit Manuf; 2023 Aug; 10(4):828-854. PubMed ID: 37609584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hierarchical biomaterials via photopatterning-enhanced direct ink writing.
    Guzzi EA; Bischof R; Dranseikiene D; Deshmukh DV; Wahlsten A; Bovone G; Bernhard S; Tibbitt MW
    Biofabrication; 2021 Sep; 13(4):. PubMed ID: 34433148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D printing of glass by additive manufacturing techniques: a review.
    Zhang D; Liu X; Qiu J
    Front Optoelectron; 2021 Sep; 14(3):263-277. PubMed ID: 36637727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Printable Conducting and Biocompatible PEDOT-graft-PLA Copolymers by Direct Ink Writing.
    Dominguez-Alfaro A; Gabirondo E; Alegret N; De León-Almazán CM; Hernandez R; Vallejo-Illarramendi A; Prato M; Mecerreyes D
    Macromol Rapid Commun; 2021 Jun; 42(12):e2100100. PubMed ID: 33938086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ink-based additive manufacturing for electrochemical applications.
    Zhang R; Sun T
    Heliyon; 2024 Jun; 10(12):e33023. PubMed ID: 38994065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hierarchical Porous Ceramics with Distinctive Microstructures by Emulsion-Based Direct Ink Writing.
    Liu Q; Zhai W
    ACS Appl Mater Interfaces; 2022 Jul; 14(28):32196-32205. PubMed ID: 35786835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A New 3D Printing Strategy by Harnessing Deformation, Instability, and Fracture of Viscoelastic Inks.
    Yuk H; Zhao X
    Adv Mater; 2018 Feb; 30(6):. PubMed ID: 29239049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct ink writing of porous titanium (Ti6Al4V) lattice structures.
    Elsayed H; Rebesan P; Giacomello G; Pasetto M; Gardin C; Ferroni L; Zavan B; Biasetto L
    Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109794. PubMed ID: 31349412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid Multimaterial 3D Printing Using Photocuring-While-Dispensing.
    Jin J; Zhang F; Yang Y; Zhang C; Wu H; Xu Y; Chen Y
    Small; 2023 Dec; 19(50):e2302405. PubMed ID: 37688318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct-Ink-Writing 3D-Printed Bioelectronics.
    Tay RY; Song Y; Yao DR; Gao W
    Mater Today (Kidlington); 2023 Dec; 71():135-151. PubMed ID: 38222250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase-Change-Enabled, Rapid, High-Resolution Direct Ink Writing of Soft Silicone.
    Wang Y; Willenbacher N
    Adv Mater; 2022 Apr; 34(15):e2109240. PubMed ID: 35174913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Resolution 3D Printing of Mechanically Tough Hydrogels Prepared by Thermo-Responsive Poloxamer Ink Platform.
    Imani KBC; Jo A; Choi GM; Kim B; Chung JW; Lee HS; Yoon J
    Macromol Rapid Commun; 2022 Jan; 43(2):e2100579. PubMed ID: 34708464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multimaterial 3D Printing of Highly Stretchable Silicone Elastomers.
    Zhou LY; Gao Q; Fu JZ; Chen QY; Zhu JP; Sun Y; He Y
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23573-23583. PubMed ID: 31184459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Current Status in the Utilization of Biobased Polymers for 3D Printing Process: A Systematic Review of the Materials, Processes, and Challenges.
    Shahbazi M; Jäger H
    ACS Appl Bio Mater; 2021 Jan; 4(1):325-369. PubMed ID: 35014287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D Printing of a Biocompatible Nanoink Derived from Waste Animal Bones.
    Das M; Jana A; Mishra R; Maity S; Maiti P; Panda SK; Mitra R; Arora A; Owuor PS; Tiwary CS
    ACS Appl Bio Mater; 2023 Apr; 6(4):1566-1576. PubMed ID: 36947679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.