These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

409 related articles for article (PubMed ID: 35246886)

  • 21. Direct Ink Writing Based 4D Printing of Materials and Their Applications.
    Wan X; Luo L; Liu Y; Leng J
    Adv Sci (Weinh); 2020 Aug; 7(16):2001000. PubMed ID: 32832355
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multi-Material Direct Ink Writing (DIW) for Complex 3D Metallic Structures with Removable Supports.
    Xu C; Quinn B; Lebel LL; Therriault D; L'Espérance G
    ACS Appl Mater Interfaces; 2019 Feb; 11(8):8499-8506. PubMed ID: 30689948
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 3D printing of concentrated emulsions into multiphase biocompatible soft materials.
    Sommer MR; Alison L; Minas C; Tervoort E; Rühs PA; Studart AR
    Soft Matter; 2017 Mar; 13(9):1794-1803. PubMed ID: 28165099
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chitin nanocrystals assisted 3D printing of polycitrate thermoset bioelastomers.
    Gu S; Tian Y; Liang K; Ji Y
    Carbohydr Polym; 2021 Mar; 256():117549. PubMed ID: 33483056
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Additive Manufacturing of Optical Quality Germania-Silica Glasses.
    Sasan K; Lange A; Yee TD; Dudukovic N; Nguyen DT; Johnson MA; Herrera OD; Yoo JH; Sawvel AM; Ellis ME; Mah CM; Ryerson R; Wong LL; Suratwala T; Destino JF; Dylla-Spears R
    ACS Appl Mater Interfaces; 2020 Feb; 12(5):6736-6741. PubMed ID: 31934741
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultraviolet-Assisted Direct Ink Write to Additively Manufacture All-Aromatic Polyimides.
    Rau DA; Herzberger J; Long TE; Williams CB
    ACS Appl Mater Interfaces; 2018 Oct; 10(41):34828-34833. PubMed ID: 30289680
    [TBL] [Abstract][Full Text] [Related]  

  • 27. X-ray computed tomography evaluations of additive manufactured multimaterial composites.
    Curto M; Kao AP; Keeble W; Tozzi G; Barber AH
    J Microsc; 2022 Mar; 285(3):131-143. PubMed ID: 34057229
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Printability of Poly(lactic acid) Ink by Embedded 3D Printing
    Karyappa R; Liu H; Zhu Q; Hashimoto M
    ACS Appl Mater Interfaces; 2023 May; 15(17):21575-21584. PubMed ID: 37078653
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 3D Printed Flexible Strain Sensors: From Printing to Devices and Signals.
    Liu H; Zhang H; Han W; Lin H; Li R; Zhu J; Huang W
    Adv Mater; 2021 Feb; 33(8):e2004782. PubMed ID: 33448066
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 3D printing with 2D colloids: designing rheology protocols to predict 'printability' of soft-materials.
    Corker A; Ng HC; Poole RJ; García-Tuñón E
    Soft Matter; 2019 Feb; 15(6):1444-1456. PubMed ID: 30667028
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 3D printing of multi-scalable structures via high penetration near-infrared photopolymerization.
    Zhu J; Zhang Q; Yang T; Liu Y; Liu R
    Nat Commun; 2020 Jul; 11(1):3462. PubMed ID: 32651379
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Advanced supramolecular design for direct ink writing of soft materials.
    Tang M; Zhong Z; Ke C
    Chem Soc Rev; 2023 Mar; 52(5):1614-1649. PubMed ID: 36779285
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fully Packaged Carbon Nanotube Supercapacitors by Direct Ink Writing on Flexible Substrates.
    Chen B; Jiang Y; Tang X; Pan Y; Hu S
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):28433-28440. PubMed ID: 28782923
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 4D Printing of Freestanding Liquid Crystal Elastomers via Hybrid Additive Manufacturing.
    Peng X; Wu S; Sun X; Yue L; Montgomery SM; Demoly F; Zhou K; Zhao RR; Qi HJ
    Adv Mater; 2022 Sep; 34(39):e2204890. PubMed ID: 35962737
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optimizing Process Parameters of Direct Ink Writing for Dimensional Accuracy of Printed Layers.
    Tu Y; Arrieta-Escobar JA; Hassan A; Zaman UKU; Siadat A; Yang G
    3D Print Addit Manuf; 2023 Aug; 10(4):816-827. PubMed ID: 37609589
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tailored Polypeptide Star Copolymers for 3D Printing of Bacterial Composites Via Direct Ink Writing.
    Murphy RD; Garcia RV; Oh SJ; Wood TJ; Jo KD; Read de Alaniz J; Perkins E; Hawker CJ
    Adv Mater; 2023 Jan; 35(3):e2207542. PubMed ID: 36305041
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Embedded Sensors with 3D Printing Technology: Review.
    Bas J; Dutta T; Llamas Garro I; Velázquez-González JS; Dubey R; Mishra SK
    Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544218
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 3D-Printable Carbon Nanotubes-Based Composite for Flexible Piezoresistive Sensors.
    Fekiri C; Kim HC; Lee IH
    Materials (Basel); 2020 Dec; 13(23):. PubMed ID: 33271994
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Direct-ink-write printing of hydrogels using dilute inks.
    Li X; Zhang P; Li Q; Wang H; Yang C
    iScience; 2021 Apr; 24(4):102319. PubMed ID: 33870134
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Universal Nanocarrier Ink Platform for Biomaterials Additive Manufacturing.
    Guzzi EA; Bovone G; Tibbitt MW
    Small; 2019 Dec; 15(51):e1905421. PubMed ID: 31762197
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.