BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 35247135)

  • 1. Quantitative redox proteomics revealed molecular mechanisms of salt tolerance in the roots of sugar beet monomeric addition line M14.
    Liu H; Du X; Zhang J; Li J; Chen S; Duanmu H; Li H
    Bot Stud; 2022 Mar; 63(1):5. PubMed ID: 35247135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cys-SH based quantitative redox proteomics of salt induced response in sugar beet monosomic addition line M14.
    Li J; Wang K; Ji M; Zhang T; Yang C; Liu H; Chen S; Li H; Li H
    Bot Stud; 2021 Oct; 62(1):16. PubMed ID: 34661775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative proteomics and phosphoproteomics of sugar beet monosomic addition line M14 in response to salt stress.
    Yu B; Li J; Koh J; Dufresne C; Yang N; Qi S; Zhang Y; Ma C; Duong BV; Chen S; Li H
    J Proteomics; 2016 Jun; 143():286-297. PubMed ID: 27233743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Salt stress response of membrane proteome of sugar beet monosomic addition line M14.
    Li H; Pan Y; Zhang Y; Wu C; Ma C; Yu B; Zhu N; Koh J; Chen S
    J Proteomics; 2015 Sep; 127(Pt A):18-33. PubMed ID: 25845583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. De novo transcriptome assembly and identification of salt-responsive genes in sugar beet M14.
    Lv X; Jin Y; Wang Y
    Comput Biol Chem; 2018 Aug; 75():1-10. PubMed ID: 29705503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteomic analysis of salt tolerance in sugar beet monosomic addition line M14.
    Yang L; Zhang Y; Zhu N; Koh J; Ma C; Pan Y; Yu B; Chen S; Li H
    J Proteome Res; 2013 Nov; 12(11):4931-50. PubMed ID: 23799291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overexpression of a
    Ji M; Wang K; Wang L; Chen S; Li H; Ma C; Wang Y
    Int J Mol Sci; 2019 Apr; 20(8):. PubMed ID: 31018555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative Physiological and Proteomic Analysis of Two Sugar Beet Genotypes with Contrasting Salt Tolerance.
    Wang Y; Stevanato P; Lv C; Li R; Geng G
    J Agric Food Chem; 2019 May; 67(21):6056-6073. PubMed ID: 31070911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overexpression of S-Adenosyl-l-Methionine Synthetase 2 from Sugar Beet M14 Increased Arabidopsis Tolerance to Salt and Oxidative Stress.
    Ma C; Wang Y; Gu D; Nan J; Chen S; Li H
    Int J Mol Sci; 2017 Apr; 18(4):. PubMed ID: 28420190
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional Characterization of Sugar Beet M14 Antioxidant Enzymes in Plant Salt Stress Tolerance.
    Li J; Yu B; Ma C; Li H; Jiang D; Nan J; Xu M; Liu H; Chen S; Duanmu H; Li H
    Antioxidants (Basel); 2022 Dec; 12(1):. PubMed ID: 36670918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative Ubiquitination Proteomics Revealed the Salt Tolerance Mechanism in Sugar Beet Monomeric Additional Line M14.
    Liu H; Zhang J; Li J; Yu B; Chen S; Ma C; Li H
    Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. iTRAQ-Based Comparative Proteomic Analysis Provides Insights into Molecular Mechanisms of Salt Tolerance in Sugar Beet (
    Wu GQ; Wang JL; Feng RJ; Li SJ; Wang CM
    Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30518064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox and Reactive Oxygen Species Network in Acclimation for Salinity Tolerance in Sugar Beet.
    Hossain MS; ElSayed AI; Moore M; Dietz KJ
    J Exp Bot; 2017 Feb; 68(5):1283-1298. PubMed ID: 28338762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Salt stress induced proteome and transcriptome changes in sugar beet monosomic addition line M14.
    Yang L; Ma C; Wang L; Chen S; Li H
    J Plant Physiol; 2012 Jun; 169(9):839-50. PubMed ID: 22498239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of early salt stress responsive proteins in seedling roots of upland cotton (Gossypium hirsutum L.) employing iTRAQ-based proteomic technique.
    Li W; Zhao F; Fang W; Xie D; Hou J; Yang X; Zhao Y; Tang Z; Nie L; Lv S
    Front Plant Sci; 2015; 6():732. PubMed ID: 26442045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential competence of redox-regulatory mechanism under extremes of temperature determines growth performances and cross tolerance in two indica rice cultivars.
    Chakraborty A; Bhattacharjee S
    J Plant Physiol; 2015 Mar; 176():65-77. PubMed ID: 25588693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Salt stress vs. salt shock - the case of sugar beet and its halophytic ancestor.
    Skorupa M; Gołębiewski M; Kurnik K; Niedojadło J; Kęsy J; Klamkowski K; Wójcik K; Treder W; Tretyn A; Tyburski J
    BMC Plant Biol; 2019 Feb; 19(1):57. PubMed ID: 30727960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bicarbonate Induced Redox Proteome Changes in Arabidopsis Suspension Cells.
    Yin Z; Balmant K; Geng S; Zhu N; Zhang T; Dufresne C; Dai S; Chen S
    Front Plant Sci; 2017; 8():58. PubMed ID: 28184230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. IodoTMT-labeled redox proteomics reveals the involvement of oxidative post-translational modification in response to para-hydroxybenzoic acid and hydrogen peroxide stresses in poplar.
    Wei G; Wang C; Lei X; Gao X; Li J; Zhang S; Guo J
    Ecotoxicol Environ Saf; 2023 Jul; 259():115033. PubMed ID: 37224778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative Proteomics of Salt-Tolerant and Salt-Sensitive Maize Inbred Lines to Reveal the Molecular Mechanism of Salt Tolerance.
    Chen F; Fang P; Peng Y; Zeng W; Zhao X; Ding Y; Zhuang Z; Gao Q; Ren B
    Int J Mol Sci; 2019 Sep; 20(19):. PubMed ID: 31554168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.