BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 35247135)

  • 21. Advances in Understanding the Physiological and Molecular Responses of Sugar Beet to Salt Stress.
    Lv X; Chen S; Wang Y
    Front Plant Sci; 2019; 10():1431. PubMed ID: 31781145
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transcriptome analysis and differential gene expression profiling of two contrasting quinoa genotypes in response to salt stress.
    Shi P; Gu M
    BMC Plant Biol; 2020 Dec; 20(1):568. PubMed ID: 33380327
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Distinct salinity-induced changes in wheat metabolic machinery in different root tissue types.
    Dissanayake BM; Staudinger C; Munns R; Taylor NL; Millar AH
    J Proteomics; 2022 Mar; 256():104502. PubMed ID: 35093570
    [TBL] [Abstract][Full Text] [Related]  

  • 24. OMICS Technologies and Applications in Sugar Beet.
    Zhang Y; Nan J; Yu B
    Front Plant Sci; 2016; 7():900. PubMed ID: 27446130
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transcriptome Analysis of Salt-Sensitive and Tolerant Genotypes Reveals Salt-Tolerance Metabolic Pathways in Sugar Beet.
    Geng G; Lv C; Stevanato P; Li R; Liu H; Yu L; Wang Y
    Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31775274
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Proteome-wide identification of S-sulphenylated cysteines in Brassica napus.
    Yu L; Iqbal S; Zhang Y; Zhang G; Ali U; Lu S; Yao X; Guo L
    Plant Cell Environ; 2021 Nov; 44(11):3571-3582. PubMed ID: 34347306
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The physiological and metabolic changes in sugar beet seedlings under different levels of salt stress.
    Wang Y; Stevanato P; Yu L; Zhao H; Sun X; Sun F; Li J; Geng G
    J Plant Res; 2017 Nov; 130(6):1079-1093. PubMed ID: 28711996
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Physiological and Transcriptome Analysis of Sugar Beet Reveals Different Mechanisms of Response to Neutral Salt and Alkaline Salt Stresses.
    Geng G; Li R; Stevanato P; Lv C; Lu Z; Yu L; Wang Y
    Front Plant Sci; 2020; 11():571864. PubMed ID: 33193507
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparative Transcriptome and Proteome Analysis of Salt-Tolerant and Salt-Sensitive Sweet Potato and Overexpression of
    Meng X; Liu S; Dong T; Xu T; Ma D; Pan S; Li Z; Zhu M
    Front Plant Sci; 2020; 11():572540. PubMed ID: 32973858
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative proteomic analysis of salt-responsive proteins in canola roots by 2-DE and MALDI-TOF MS.
    Kholghi M; Toorchi M; Bandehagh A; Ostendorp A; Ostendorp S; Hanhart P; Kehr J
    Biochim Biophys Acta Proteins Proteom; 2019 Mar; 1867(3):227-236. PubMed ID: 30611781
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functional Characterization of a Sugar Beet
    Wang Y; Wang S; Tian Y; Wang Q; Chen S; Li H; Ma C; Li H
    Int J Mol Sci; 2021 Apr; 22(7):. PubMed ID: 33915978
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Proteomics-based investigation of salt-responsive mechanisms in plant roots.
    Zhao Q; Zhang H; Wang T; Chen S; Dai S
    J Proteomics; 2013 Apr; 82():230-53. PubMed ID: 23385356
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genome-wide analysis of WD40 protein family and functional characterization of
    Wu Z; Zhang T; Li J; Chen S; Grin IR; Zharkov DO; Yu B; Li H
    Front Plant Sci; 2023; 14():1185440. PubMed ID: 37332716
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Unraveling the Root Proteome Changes and Its Relationship to Molecular Mechanism Underlying Salt Stress Response in Radish (
    Sun X; Wang Y; Xu L; Li C; Zhang W; Luo X; Jiang H; Liu L
    Front Plant Sci; 2017; 8():1192. PubMed ID: 28769938
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Proteomics Analysis of
    Jia T; Wang J; Chang W; Fan X; Sui X; Song F
    Int J Mol Sci; 2019 Feb; 20(3):. PubMed ID: 30759832
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparative Proteomic Analysis of Soybean Leaves and Roots by iTRAQ Provides Insights into Response Mechanisms to Short-Term Salt Stress.
    Ji W; Cong R; Li S; Li R; Qin Z; Li Y; Zhou X; Chen S; Li J
    Front Plant Sci; 2016; 7():573. PubMed ID: 27200046
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanisms of plant salt response: insights from proteomics.
    Zhang H; Han B; Wang T; Chen S; Li H; Zhang Y; Dai S
    J Proteome Res; 2012 Jan; 11(1):49-67. PubMed ID: 22017755
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparative Proteomics of Contrasting Maize Genotypes Provides Insights into Salt-Stress Tolerance Mechanisms.
    Luo M; Zhao Y; Wang Y; Shi Z; Zhang P; Zhang Y; Song W; Zhao J
    J Proteome Res; 2018 Jan; 17(1):141-153. PubMed ID: 29192500
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative transcriptome and translatome analysis in contrasting rice genotypes reveals differential mRNA translation in salt-tolerant Pokkali under salt stress.
    Li YF; Zheng Y; Vemireddy LR; Panda SK; Jose S; Ranjan A; Panda P; Govindan G; Cui J; Wei K; Yaish MW; Naidoo GC; Sunkar R
    BMC Genomics; 2018 Dec; 19(Suppl 10):935. PubMed ID: 30598105
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cloning of a cystatin gene from sugar beet M14 that can enhance plant salt tolerance.
    Wang Y; Zhan Y; Wu C; Gong S; Zhu N; Chen S; Li H
    Plant Sci; 2012 Aug; 191-192():93-9. PubMed ID: 22682568
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.