BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 35247492)

  • 1. A bioassay for neuromuscular junction-restricted complement activation by myasthenia gravis acetylcholine receptor antibodies.
    Plomp JJ; Huijbers MGM; Verschuuren JJGM; Borodovsky A
    J Neurosci Methods; 2022 May; 373():109551. PubMed ID: 35247492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myasthenia gravis: the role of complement at the neuromuscular junction.
    Howard JF
    Ann N Y Acad Sci; 2018 Jan; 1412(1):113-128. PubMed ID: 29266249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Muscle-specific kinase myasthenia gravis IgG4 autoantibodies cause severe neuromuscular junction dysfunction in mice.
    Klooster R; Plomp JJ; Huijbers MG; Niks EH; Straasheijm KR; Detmers FJ; Hermans PW; Sleijpen K; Verrips A; Losen M; Martinez-Martinez P; De Baets MH; van der Maarel SM; Verschuuren JJ
    Brain; 2012 Apr; 135(Pt 4):1081-101. PubMed ID: 22396395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Myasthenia Gravis: Pathogenic Effects of Autoantibodies on Neuromuscular Architecture.
    Koneczny I; Herbst R
    Cells; 2019 Jul; 8(7):. PubMed ID: 31269763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recombinant Acetylcholine Receptor Immunization Induces a Robust Model of Experimental Autoimmune Myasthenia Gravis in Mice.
    Theissen L; Schroeter CB; Huntemann N; Räuber S; Dobelmann V; Cengiz D; Herrmann A; Koch-Hölsken K; Gerdes N; Hu H; Mourikis P; Polzin A; Kelm M; Hartung HP; Meuth SG; Nelke C; Ruck T
    Cells; 2024 Mar; 13(6):. PubMed ID: 38534352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuromuscular synapse electrophysiology in myasthenia gravis animal models.
    Plomp JJ; Huijbers MGM; Verschuuren JJGM
    Ann N Y Acad Sci; 2018 Jan; 1412(1):146-153. PubMed ID: 29068559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of acetylcholine receptor loss in myasthenia gravis.
    Drachman DB; Adams RN; Stanley EF; Pestronk A
    J Neurol Neurosurg Psychiatry; 1980 Jul; 43(7):601-10. PubMed ID: 6249894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pathological mechanisms in experimental autoimmune myasthenia gravis. II. Passive transfer of experimental autoimmune myasthenia gravis in rats with anti-acetylcholine recepotr antibodies.
    Lindstrom JM; Engel AG; Seybold ME; Lennon VA; Lambert EH
    J Exp Med; 1976 Sep; 144(3):739-53. PubMed ID: 182897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anti-LRP4 autoantibodies in AChR- and MuSK-antibody-negative myasthenia gravis.
    Pevzner A; Schoser B; Peters K; Cosma NC; Karakatsani A; Schalke B; Melms A; Kröger S
    J Neurol; 2012 Mar; 259(3):427-35. PubMed ID: 21814823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antibody effector mechanisms in myasthenia gravis-pathogenesis at the neuromuscular junction.
    Gomez AM; Van Den Broeck J; Vrolix K; Janssen SP; Lemmens MA; Van Der Esch E; Duimel H; Frederik P; Molenaar PC; Martínez-Martínez P; De Baets MH; Losen M
    Autoimmunity; 2010 Aug; 43(5-6):353-70. PubMed ID: 20380584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of the classical complement pathway in myasthenia gravis with acetylcholine receptor antibodies.
    Ozawa Y; Uzawa A; Onishi Y; Yasuda M; Kojima Y; Kuwabara S
    Muscle Nerve; 2023 Nov; 68(5):798-804. PubMed ID: 37705312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuromuscular junction autoimmune disease: muscle specific kinase antibodies and treatments for myasthenia gravis.
    Vincent A; Leite MI
    Curr Opin Neurol; 2005 Oct; 18(5):519-25. PubMed ID: 16155434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using Xenopus tissue cultures for the study of myasthenia gravis pathogenesis.
    Yeo HL; Lim JY; Fukami Y; Yuki N; Lee CW
    Dev Biol; 2015 Dec; 408(2):244-51. PubMed ID: 25746216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms associated with the pathogenicity of antibodies against muscle-specific kinase in myasthenia gravis.
    Mori S; Shigemoto K
    Autoimmun Rev; 2013 Jul; 12(9):912-7. PubMed ID: 23537506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complement associated pathogenic mechanisms in myasthenia gravis.
    Tüzün E; Christadoss P
    Autoimmun Rev; 2013 Jul; 12(9):904-11. PubMed ID: 23537510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. IgG1 antibodies to acetylcholine receptors in 'seronegative' myasthenia gravis.
    Leite MI; Jacob S; Viegas S; Cossins J; Clover L; Morgan BP; Beeson D; Willcox N; Vincent A
    Brain; 2008 Jul; 131(Pt 7):1940-52. PubMed ID: 18515870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anti-MuSK patient antibodies disrupt the mouse neuromuscular junction.
    Cole RN; Reddel SW; Gervásio OL; Phillips WD
    Ann Neurol; 2008 Jun; 63(6):782-9. PubMed ID: 18384168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pre- and post-synaptic abnormalities associated with impaired neuromuscular transmission in a group of patients with 'limb-girdle myasthenia'.
    Slater CR; Fawcett PR; Walls TJ; Lyons PR; Bailey SJ; Beeson D; Young C; Gardner-Medwin D
    Brain; 2006 Aug; 129(Pt 8):2061-76. PubMed ID: 16870884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased expression of rapsyn in muscles prevents acetylcholine receptor loss in experimental autoimmune myasthenia gravis.
    Losen M; Stassen MH; Martínez-Martínez P; Machiels BM; Duimel H; Frederik P; Veldman H; Wokke JH; Spaans F; Vincent A; De Baets MH
    Brain; 2005 Oct; 128(Pt 10):2327-37. PubMed ID: 16150851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antibodies against muscle-specific kinase impair both presynaptic and postsynaptic functions in a murine model of myasthenia gravis.
    Mori S; Kubo S; Akiyoshi T; Yamada S; Miyazaki T; Hotta H; Desaki J; Kishi M; Konishi T; Nishino Y; Miyazawa A; Maruyama N; Shigemoto K
    Am J Pathol; 2012 Feb; 180(2):798-810. PubMed ID: 22142810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.