These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 35247613)

  • 41. Using Automated Machine Learning to Predict the Mortality of Patients With COVID-19: Prediction Model Development Study.
    Ikemura K; Bellin E; Yagi Y; Billett H; Saada M; Simone K; Stahl L; Szymanski J; Goldstein DY; Reyes Gil M
    J Med Internet Res; 2021 Feb; 23(2):e23458. PubMed ID: 33539308
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Using trauma registry data to predict prolonged mechanical ventilation in patients with traumatic brain injury: Machine learning approach.
    Abujaber A; Fadlalla A; Gammoh D; Abdelrahman H; Mollazehi M; El-Menyar A
    PLoS One; 2020; 15(7):e0235231. PubMed ID: 32639971
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A deep neural network framework to derive interpretable decision rules for accurate traumatic brain injury identification of infants.
    Zou B; Mi X; Stone E; Zou F
    BMC Med Inform Decis Mak; 2023 Apr; 23(1):58. PubMed ID: 37024858
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Accurately predicting the risk of unfavorable outcomes after endovascular coil therapy in patients with aneurysmal subarachnoid hemorrhage: an interpretable machine learning model.
    Zhou Z; Dai A; Yan Y; Jin Y; Zou D; Xu X; Xiang L; Guo L; Xiang L; Jiang F; Zhao Z; Zou J
    Neurol Sci; 2024 Feb; 45(2):679-691. PubMed ID: 37624541
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Development of an unsupervised machine learning algorithm for the prognostication of walking ability in spinal cord injury patients.
    DeVries Z; Hoda M; Rivers CS; Maher A; Wai E; Moravek D; Stratton A; Kingwell S; Fallah N; Paquet J; Phan P;
    Spine J; 2020 Feb; 20(2):213-224. PubMed ID: 31525468
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Self-Supervised Learning for Improved Optical Coherence Tomography Detection of Macular Telangiectasia Type 2.
    Gholami S; Scheppke L; Kshirsagar M; Wu Y; Dodhia R; Bonelli R; Leung I; Sallo FB; Muldrew A; Jamison C; Peto T; Lavista Ferres J; Weeks WB; Friedlander M; Lee AY;
    JAMA Ophthalmol; 2024 Mar; 142(3):226-233. PubMed ID: 38329740
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Prediction of Cardiac Arrest in the Emergency Department Based on Machine Learning and Sequential Characteristics: Model Development and Retrospective Clinical Validation Study.
    Hong S; Lee S; Lee J; Cha WC; Kim K
    JMIR Med Inform; 2020 Aug; 8(8):e15932. PubMed ID: 32749227
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Precision medicine for traumatic cervical spinal cord injuries: accessible and interpretable machine learning models to predict individualized in-hospital outcomes.
    Karabacak M; Margetis K
    Spine J; 2023 Dec; 23(12):1750-1763. PubMed ID: 37619871
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Development and validation of a prehospital-stage prediction tool for traumatic brain injury: a multicentre retrospective cohort study in Korea.
    Choi Y; Park JH; Hong KJ; Ro YS; Song KJ; Shin SD
    BMJ Open; 2022 Jan; 12(1):e055918. PubMed ID: 35022177
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Development and Validation of a Deep Learning Model for Earlier Detection of Cognitive Decline From Clinical Notes in Electronic Health Records.
    Wang L; Laurentiev J; Yang J; Lo YC; Amariglio RE; Blacker D; Sperling RA; Marshall GA; Zhou L
    JAMA Netw Open; 2021 Nov; 4(11):e2135174. PubMed ID: 34792589
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Prognosis at Your Fingertips: A Machine Learning-Based Web Application for Outcome Prediction in Acute Traumatic Epidural Hematoma.
    Karabacak M; Margetis K
    J Neurotrauma; 2024 Jan; 41(1-2):147-160. PubMed ID: 37261977
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Predictive modeling in pediatric traumatic brain injury using machine learning.
    Chong SL; Liu N; Barbier S; Ong ME
    BMC Med Res Methodol; 2015 Mar; 15():22. PubMed ID: 25886156
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Development and Validation of an Explainable Machine Learning Model for Major Complications After Cytoreductive Surgery.
    Deng H; Eftekhari Z; Carlin C; Veerapong J; Fournier KF; Johnston FM; Dineen SP; Powers BD; Hendrix R; Lambert LA; Abbott DE; Vande Walle K; Grotz TE; Patel SH; Clarke CN; Staley CA; Abdel-Misih S; Cloyd JM; Lee B; Fong Y; Raoof M
    JAMA Netw Open; 2022 May; 5(5):e2212930. PubMed ID: 35612856
    [TBL] [Abstract][Full Text] [Related]  

  • 54. XGBoost Machine Learning Algorism Performed Better Than Regression Models in Predicting Mortality of Moderate-to-Severe Traumatic Brain Injury.
    Wang R; Wang L; Zhang J; He M; Xu J
    World Neurosurg; 2022 Jul; 163():e617-e622. PubMed ID: 35430400
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The performance of VCS(volume, conductivity, light scatter) parameters in distinguishing latent tuberculosis and active tuberculosis by using machine learning algorithm.
    Chen L; Yuan L; Sun T; Liu R; Huang Q; Deng S
    BMC Infect Dis; 2023 Dec; 23(1):881. PubMed ID: 38104064
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Detection of Bacteremia in Surgical In-Patients Using Recurrent Neural Network Based on Time Series Records: Development and Validation Study.
    Park HJ; Jung DY; Ji W; Choi CM
    J Med Internet Res; 2020 Aug; 22(8):e19512. PubMed ID: 32669261
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A Machine Learning Approach for Predicting Real-time Risk of Intraoperative Hypotension in Traumatic Brain Injury.
    Feld SI; Hippe DS; Miljacic L; Polissar NL; Newman SF; Nair BG; Vavilala MS
    J Neurosurg Anesthesiol; 2023 Apr; 35(2):215-223. PubMed ID: 34759236
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Predictive modeling for 14-day unplanned hospital readmission risk by using machine learning algorithms.
    Lo YT; Liao JC; Chen MH; Chang CM; Li CT
    BMC Med Inform Decis Mak; 2021 Oct; 21(1):288. PubMed ID: 34670553
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Predicting malnutrition from longitudinal patient trajectories with deep learning.
    Jin BT; Choi MH; Moyer MF; Kim DA
    PLoS One; 2022; 17(7):e0271487. PubMed ID: 35901027
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Impact of Intraoperative Data on Risk Prediction for Mortality After Intra-Abdominal Surgery.
    Yan X; Goldsmith J; Mohan S; Turnbull ZA; Freundlich RE; Billings FT; Kiran RP; Li G; Kim M
    Anesth Analg; 2022 Jan; 134(1):102-113. PubMed ID: 34908548
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.