These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 35247759)

  • 1. Mass flow, enrichment and potential environmental impacts of mercury in a preheater-precalciner cement plant using multiple mining and industrial wastes.
    Li Z; Huang Y; Liu J; Sun G; Wang Q; Xiao H; Huang M
    J Environ Manage; 2022 Mar; 311():114819. PubMed ID: 35247759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distribution of Hg, As and Se in material and flue gas streams from preheater-precalciner cement kilns and vertical shaft cement kilns in China.
    Yan D; Peng Z; Ding Q; Karstensen KH; Engelsen CJ; Li L; Ren Y; Jiang C
    J Air Waste Manag Assoc; 2015 Aug; 65(8):1002-10. PubMed ID: 26037967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mercury isotope signatures of a pre-calciner cement plant in Southwest China.
    Li X; Chen J; Tang L; Wu T; Fu C; Li Z; Sun G; Zhao H; Zhang L; Li Q; Feng X
    J Hazard Mater; 2021 Jan; 401():123384. PubMed ID: 32763687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Destruction of DDT wastes in two preheater/precalciner cement kilns in China.
    Yan D; Peng Z; Karstensen KH; Ding Q; Wang K; Wang Z
    Sci Total Environ; 2014 Apr; 476-477():250-7. PubMed ID: 24468499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fate of Lead and Cadmium in Precalciner Cement Plants and Their Atmospheric Releases.
    Huang Y; Liu J; Yang L; Li X; Hu G; Wang G; Sun G; Li Z
    ACS Omega; 2021 Aug; 6(33):21265-21275. PubMed ID: 34471731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation, release and control of dioxins in cement kilns.
    Karstensen KH
    Chemosphere; 2008 Jan; 70(4):543-60. PubMed ID: 17698165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of MRF residue as alternative fuel in cement production.
    Fyffe JR; Breckel AC; Townsend AK; Webber ME
    Waste Manag; 2016 Jan; 47(Pt B):276-84. PubMed ID: 26187294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mercury emission characteristics and mechanism in the raw mill system of cement clinker production.
    Li G; Wang S; Wu Q; Li J; Chen Z; Li J; Wang F; Han D; Li Z; Tang Y; Ouyang D; Liu K
    J Hazard Mater; 2022 May; 430():128403. PubMed ID: 35739653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid Increase in Cement-Related Mercury Emissions and Deposition in China during 2005-2015.
    Chen L; Liang S; Zhang H; Cai X; Chen Y; Liu M; Lin H; Li Y; Qi J; Tong Y; Zhang W; Wang X; Shu J
    Environ Sci Technol; 2020 Nov; 54(22):14204-14214. PubMed ID: 33105992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characteristics of mercury cycling in the cement production process.
    Wang F; Wang S; Zhang L; Yang H; Wu Q; Hao J
    J Hazard Mater; 2016 Jan; 302():27-35. PubMed ID: 26448491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation of heavy metals behaviour during Co-processing of fly ash from municipal solid waste incineration with cement raw meal in a rotary kiln.
    Wang L; Huang X; Li X; Bi X; Yan D; Hu W; Jim Lim C; Grace JR
    Waste Manag; 2022 May; 144():246-254. PubMed ID: 35413523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Model for cradle-to-gate life cycle assessment of clinker production.
    Boesch ME; Koehler A; Hellweg S
    Environ Sci Technol; 2009 Oct; 43(19):7578-83. PubMed ID: 19848179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dioxin emission and distribution from cement kiln co-processing of hazardous solid waste.
    Ye WW; Cai PT; Zhan MX; Jiao WT; Xu-Xu ; Fu JY; Chen T; Li XD
    Environ Sci Pollut Res Int; 2022 Jul; 29(35):53755-53767. PubMed ID: 35288857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Natural Background and the Anthropogenic Enrichment of Mercury in the Southern Florida Environment: A Review with a Discussion on Public Health.
    Missimer TM; MacDonald JH; Tsegaye S; Thomas S; Teaf CM; Covert D; Kassis ZR
    Int J Environ Res Public Health; 2024 Jan; 21(1):. PubMed ID: 38276812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accelerated Direct Carbonation of Steel Slag and Cement Kiln Dust: An Industrial Symbiosis Strategy Applied in the Bergamo-Brescia Area.
    Biava G; Zacco A; Zanoletti A; Sorrentino GP; Capone C; Princigallo A; Depero LE; Bontempi E
    Materials (Basel); 2023 May; 16(11):. PubMed ID: 37297187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New Types and Dosages for the Manufacture of Low-Energy Cements from Raw Materials and Industrial Waste under the Principles of the Circular Economy and Low-Carbon Economy.
    Martínez-Martínez S; Pérez-Villarejo L; Eliche-Quesada D; Sánchez-Soto PJ
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Manufacture of potassium chloride from cement kiln bypass dust: An industrial implementation case for transforming waste into valuable resources.
    Wang J; Zeng P; Liu Z; Li Y
    Heliyon; 2023 Nov; 9(11):e21806. PubMed ID: 38034774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of vapor phase mercury released from concrete processing with baghouse filter dust added cement.
    Wang J; Hayes J; Wu CY; Townsend T; Schert J; Vinson T; Deliz K; Bonzongo JC
    Environ Sci Technol; 2014 Feb; 48(4):2481-7. PubMed ID: 24444016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Air emission from the co-combustion of alternative derived fuels within cement plants: Gaseous pollutants.
    Richards G; Agranovski IE
    J Air Waste Manag Assoc; 2015 Feb; 65(2):186-96. PubMed ID: 25947054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Utilization of flotation wastes of copper slag as raw material in cement production.
    Alp I; Deveci H; Süngün H
    J Hazard Mater; 2008 Nov; 159(2-3):390-5. PubMed ID: 18384950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.